MosaicShape: Stochastic Region Grouping with Shape Prior


Autoria(s): Wang, Jingbin; Gu, Erdan; Betke, Margrit
Data(s)

20/10/2011

20/10/2011

27/02/2005

Resumo

A novel method that combines shape-based object recognition and image segmentation is proposed for shape retrieval from images. Given a shape prior represented in a multi-scale curvature form, the proposed method identifies the target objects in images by grouping oversegmented image regions. The problem is formulated in a unified probabilistic framework and solved by a stochastic Markov Chain Monte Carlo (MCMC) mechanism. By this means, object segmentation and recognition are accomplished simultaneously. Within each sampling move during the simulation process,probabilistic region grouping operations are influenced by both the image information and the shape similarity constraint. The latter constraint is measured by a partial shape matching process. A generalized parallel algorithm by Barbu and Zhu,combined with a large sampling jump and other implementation improvements, greatly speeds up the overall stochastic process. The proposed method supports the segmentation and recognition of multiple occluded objects in images. Experimental results are provided for both synthetic and real images.

Identificador

http://hdl.handle.net/2144/1835

Idioma(s)

en_US

Publicador

Boston University Computer Science Department

Relação

BUCS Technical Reports;BUCS-TR-2005-008

Tipo

Technical Report