971 resultados para SOLID ELECTROCHROMIC CELLS
Resumo:
Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa.
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
Resumo:
In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281±39.72nm, a surface charge of 26.73±3mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer.
Resumo:
The economical and environment impacts of fossil energies increased the interest for hybrid, battery and fuel-cell electric vehicles. Several demanding engineering challenges must be faced, motivated by different physical domains integration. This paper aims to present an overview on hybrid (HEV) and electric vehicles (EV) basic structures and features. In addition, it will try to point out some of the most relevant challenges to overcome for HEV and EV may be a solid option for the mobility issue. New developments in energy storage devices and energy management systems (EMS) are crucial to achieve this goal.
Resumo:
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
Resumo:
This paper describes a modular solid-state switching cell derived from the Marx generator concept to be used in topologies for generating multilevel unipolar and bipolar high-voltage (HV) pulses into resistive loads. The switching modular cell comprises two ON/OFF semiconductors, a diode, and a capacitor. This cell can be stacked, being the capacitors charged in series and their voltages balanced in parallel. To balance each capacitor voltage without needing any parameter measurement, a vector decision diode algorithm is used in each cell to drive the two switches. Simulation and experimental results, for generating multilevel unipolar and bipolar HV pulses into resistive loads are presented.
Resumo:
Diethyldithiocarbamate (ditiocarb), a metabolite of the old anti-alcoholic drug disulfiram (Antabuse), forms proteasome-inhibiting metal complexes with copper or zinc that suppress cancer cells both in vitro and in vivo. The drug has been used in a clinical trial (NCT00742911) along with copper gluconate as a dietary supplement in patients with cancer spreading to the liver. In this study, we demonstrate the effect of synthetic complexes of disulfiram with four various metals (Mn, Fe, Cr and Cu) used as food supplements. These complexes may be spontaneously formed in the blood during the use of disulfiram with divalent metals and thus may suppress the growth of cancer in vivo. The cytotoxic effect of the compounds and the compounds' ability to inhibit the cellular proteasome were tested in the osteosarcoma cell line U2OS. After 48 h, copper and manganese complexes exhibited cytotoxic effect on the cell line, in sharp contrast to both iron and chromium complexes. (C) 2014 Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Resumo:
A new family of "Fe-II(eta(5)-C5H5)" half sandwich compounds bearing a N-heteroaromatic ligand coordinated to the iron center by a nitrile functional group has been synthesized and fully characterized by NMR and UV-Vis spectroscopy. X-ray analysis of single crystal was achieved for complexes 1 and 3, which crystallized in the monoclinic P2(1)/c and monoclinic P2(1)/n space groups, respectively. Studies of interaction of these five new complexes with plasmid pBR322 DNA by atomic force microscopy showed very strong and different types of interaction. Antiproliferative tests were examined on human leukemia cancer cells (HL-60) using the MTT assay, and the IC50 values revealed excellent antiproliferative activity compared to cisplatin. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pine forests constitute some of the most important renewable resources supplying timber, paper and chemical industries, among other functions. Characterization of the volatiles emitted by different Pinus species has proven to be an important tool to decode the process of host tree selection by herbivore insects, some of which cause serious economic damage to pines. Variations in the relative composition of the bouquet of semiochemicals are responsible for the outcome of different biological processes, such as mate finding, egg-laying site recognition and host selection. The volatiles present in phloem samples of four pine species, P. halepensis, P. sylvestris, P. pinaster and P. pinea, were identified and characterized with the aim of finding possible host-plant attractants for native pests, such as the bark beetle Tomicus piniperda. The volatile compounds emitted by phloem samples of pines were extracted by headspace solid-phase micro extraction, using a 2 cm 50/30 mm divinylbenzene/carboxen/polydimethylsiloxane table flex solid-phase microextraction fiber and its contents analyzed by high-resolution gas chromatography, using flame ionization and a non polar and chiral column phases. The components of the volatile fraction emitted by the phloem samples were identified by mass spectrometry using time-of-flight and quadrupole mass analyzers. The estimated relative composition was used to perform a discriminant analysis among pine species, by means of cluster and principal component analysis. It can be concluded that it is possible to discriminate pine species based on the monoterpenes emissions of phloem samples.
Resumo:
The behavior of tandem pin heterojunctions based on a-SiC: H alloys is investigated under different optical and electrical bias conditions. The devices are optimized to act as optically selective wavelength filters. Depending on the device configuration (optical gaps, thickness, sequence of cells in the stack structure) and on the applied voltage (positive or negative) and optical bias (wavelength, intensity, frequency) it is possible to combine the wavelength discrimination function with the self amplification of the signal. This wavelength nonlinearity allows the amplification or the rejection of a weak signal-impulse. The device works as an active tunable optical filter for wavelength selection and can be used as an add/drop multiplexer (ADM) which enables data to enter and leave an optical network bit stream without having to demultiplex the stream. Results show that, even under weak transient input signals, the background wavelength controls the output signal. This nonlinearity, due to the transient asymmetrical light penetration of the input channels across the device together with the modification on the electrical field profile due to the optical bias, allows tuning an input channel without demultiplexing the stream. This high optical nonlinearity makes the optimized devices attractive for the amplification of all optical signals. Transfer characteristics effects due to changes in steady state light, control d.c. voltage and applied light pulses are presented. Based on the experimental results and device configuration an optoelectronic model is developed. The transfer characteristics effects due to changes in steady state light, dc control voltage or applied light pulses are simulated and compared with the experimental data. A good agreement was achieved.
Resumo:
Calf serum and fetal bovine serum present great variability as to its growth promoting efficiency (GPE). As supplement of culture media to cultivate cells of animal origin they stimulate the "in vitro" multiplication and maintain cell viability. When fourteen lots of calf sera of variable GPE had the total protein contents as well as the percentages of serum fractions determined, no significant differences that could possibly explain the variability of the GPE were observed. Evaluation of the antiproteolytic activity of nineteen lots of calf serum and eighteen serum lots of younger calves showed that the former exhibited lower antiproteolytic titers (1:40 to 1:80) than the latter (1:80 to 1:160). Twelve lots of fetal bovine serum studied in parallel, showed the highest concentration of antiproteolytic factors, with titers equal to 1:320. Sera of bovine origin, but not fetal sera, are usually heat-inactivated, what was demonstrated to be responsible for the decrease of the antiproteolytic activity of 75% of the lots tested. This could explain the inability of certain heat-inactivated sera in promoting multiplication of some cells "in vitro", as verified with primary monkey kidney cells. The results obtained in this study indicated the convenience of submiting each lot of serum to be introduced in cell culture to previous determination of its characteristics, such as growth promoting efficiency, antiproteolytic activity and also toxicity, absence of extraneous agents, etc., in order to minimize the possibility of using serum lots of questionable quality, thus preventing not only the loss of cell lines, but also undesirable and sometimes expensive delays.
Resumo:
This study is primarily focused in establishing the solid-state sensory abilities of several luminescent polymeric calix[4]arene-based materials toward selected nitroaromatic compounds (NACs), creating the foundations for their future application as high performance materials for detection of high explosives. The phenylene ethynylene-type polymers possessing bis-calix[4]arene scaffolds in their core were designed to take advantage of the known recognition abilities of calixarene compounds toward neutral guests, particularly in solid-state, therefore providing enhanced sensitivity and selectivity in the sensing of a given analyte. It was found that all the calix[4]arene-poly(para-phenylene ethynylene)s here reported displayed high sensitivities toward the detection of nitrobenzene, 2,4-dinitrotoluene and 2,4,6-trinitrotoluene (TNT). Particularly effective and significant was the response of the films (25-60 nm of thickness) upon exposure to TNT vapor (10 ppb): over 50% of fluorescence quenching was achieved in only 10 s. In contrast, a model polymer lacking the calixarene units showed only reduced quenching activity for the same set of analytes, clearly highlighting the relevance of the macrocyclics in promoting the signaling of the transduction event. The films exhibited high photostability (less than 0.5% loss of fluorescence intensity up to 15 min of continuous irradiation) and the fluorescence quenching sensitivity could be fully recovered after exposure of the quenched films to saturated vapors of hydrazine (the initial fluorescence intensities were usually recovered within 2-5 min of exposure to hydrazine).
Resumo:
The operation of generalized Marx-type solid-state bipolar modulators is discussed and compared with simplified Marx-derived circuits, to evaluate their capability to deal with various load conditions. A comparative analysis on the number of switches per cell, fiber optic trigger count, losses, and switch hold-off voltages has been made. A circuit topology is obtained as a compromise in terms of operating performance, trigger simplicity, and switching losses. A five-stage laboratory prototype of this circuit has been assembled using 1200 V insulated gate bipolar transistors (IGBTs) and diodes, operating with 1000 V dc input voltage and 1 kHz frequency, giving 5 kV bipolar pulses, with 2.5 mu s pulse width and 5 mu s relaxation time into resistive, capacitive, and inductive loads.
Resumo:
This paper models an n-stage stacked Blumlein generator for bipolar pulses for various load conditions. Calculation of the voltage amplitudes in time domain at the load and between stages is described for an n-stage generator. For this, the reflection and transmission coefficients are mathematically modeled where impedance discontinuity occurs (i.e., at the junctions between two transmission lines). The mathematical model developed is assessed by comparing simulation results to experimental data from a two-stage Blumlein solid-state prototype.