976 resultados para SACCHAROMYCES CEREVISIAE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
(Triagem de plantas nativas do Brasil para atividades antimicrobiana e de Danos no DNA I. Mata Atlântica . Estação Ecológica Juréia-Itatins). Oitenta e oito espécies nativas do estado de São Paulo foram coletadas numa região de Mata Atlântica e ensaiadas quanto a sua atividade antimicrobiana e capacidade de causar danos no DNA. Dos 114 extratos submetidos aos ensaios para atividade antibacteriana, apenas os extratos de folhas e galhos de Aspidosperma ramiflorum (Apocynaceae) apresentaram uma atividade fraca contra Escherichia coli. No ensaio antifúngico com Candida albicans, não foram observados extratos ativos. Por outro lado, no ensaio de bioautografia com Cladosporium sphaerospermum e C. cladosporioides 12% dos extratos apresentaram atividade. Contudo, nesse ensaio, somente o extrato dos ramos de Psychotria mapoureoides (Rubiaceae) inibiu fortemente o crescimento de ambas espécies do fungo. O ensaio para danos no DNA com cepas mutantes de Saccharomyces cerevisiae apresentou 17.5 % de extratos ativos. A maioria dos extratos ativos (55 %) apresentou resultados seletivos para danos dependentes da topoisomerase II como mecanismo de reparo do DNA e somente 20 % foram seletivos para o mecanismo da topoisomerase I.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The optimization of autolysis of Saccharomyces cerevisiae from brewery was studied aiming at the maximum ribonucleic acid extraction and yeast extract production. The best conditions for yeast autolysis was 55.2ºC, pH= 5.1 and 9.8% NaCl for 24h of processing, without the NH3 use. In these conditions, the RNA yield was 89.7%, resulting in 51.3% of dehydrated yeast extract with 57.9% protein. The use of 12.2% NH3 at 60ºC after autolysis (8h) and plasmolysis (8h) was not viable due to the reduction in the RNA yield from 89.7to78.4%. on the other hand, the thermal shock at 60ºC for 15 minutes prior to autolysis provided an increase in the yield from 89.7 to 91.4%. The autolysis, including NaCl plasmolysis in the optimized conditions was efficient, economic and with short time, thus usable for industrial purpose to obtain more valuable products such as yeast extract enriched in RNA and/or protein, for different applications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.
Resumo:
In addition to nerolidol, 2',6'-dihydroxy-4'-methoxydihydrochalcone, methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate, methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate and methyl 8-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylate, two new natural products were isolated from the leaves of Piper aduncum, 2,2-dimethyl-2H-1-chromene-6-carboxylic acid and 3-(3',7'-dimethyl-2',6 '-octadienyl)-4-methoxybenzoic acid. The structures of the isolates were established based on analysis of spectroscopic data, including ES-MS. The DNA-damaging activity of the isolated compounds was also investigated against mutant strains of Saccharomyces cerevisiae. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The flowers of Cassia spectabilis yielded three new piperidine alkaloids, (-)-3-O-acetylspectaline (1), (-)-7-hydroxyspectaline (2), and iso-6-spectaline (3), together with the known (-)-spectaline (4). The green fruits of this plant were also investigated, resulting in the isolation of 1 and 4. Their structures were elucidated using a combination of multidimensional NMR and MS techniques, and relative stereochemistries were established by NOESY correlations and analysis of coupling constants. The DNA-damaging activity of these compounds was evaluated using a mutant yeast, Saccharomyces cerevisiae, assay.
Resumo:
The flotation capacity was determined for cells of yeasts strains belonging to the genera Hansenula, Candida and Saccharomyces. A heterogeneous group of yeasts, comprising strains from the three genera, was identified as showing high flotation capacities (degrees of flotation above 50%), which were practically not affected by variations in medium pH in both the synthetic medium and 2% molasses. Thus, the flotation capacity of the cells in this yeast group seemed strongly dependent on the liquid phase properties and/or growth medium composition, more than on the simple variation in pH of the cell suspensions. A second group of strains, belonging to the Saccharomyces genus, including also brewing yeast strains, was identified as having lower flotation capacities (degrees of flotation below 50% at pH 1.5), which showed no alterations or variations significantly affected by the medium pH. Foam volumes obtained with Saccharomyces strains were greater in synthetic media than in molasses owing to the higher air flow rates required for flotation in molasses. The flotation efficiency decreased in molasses in all cases as well as the foam volume, except in the case of Hansenula cells, which showed an increased foam volume. This was probably due to variations in product excretion by the different yeasts and/or differences in cell wall composition.
Resumo:
Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K-m (4.41 mu M) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN. (c) 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.