983 resultados para Relative Survival
Resumo:
The influence of the relative phase between the driving voltages on electron heating in asymmetric phase-locked dual frequency capacitively coupled radio frequency plasmas operated at 2 and 14 MHz is investigated. The basis of the analysis is a nonlinear global model with the option to implement a relative phase between the two driving voltages. In recent publications it has been reported that nonlinear electron resonance heating can drastically enhance the power dissipation to electrons at moments of sheath collapse due to the self-excitation of nonlinear plasma series resonance (PSR) oscillations of the radio frequency current. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In the case of two consecutive sheath collapses a substantial increase in dissipated power compared with the known increase due to a single PSR excitation event per period is observed. Phase resolved optical emission spectroscopy (PROES) provides access to the excitation dynamics in front of the driven electrode. Via PROES the propagation of beam-like energetic electrons immediately after the sheath collapse is observed. In this work we demonstrate that there is a close relation between moments of sheath collapse, and thus excitation of the PSR, and beam-like electron propagation. A comparison of simulation results to experiments in a single and dual frequency discharge shows good agreement. In particular the observed influence of the relative phase on the dynamics of a dual frequency discharge is described by means of the presented model. Additionally, the analysis demonstrates that the observed gain in dissipation is not accompanied by an increase in the electrode’s dc-bias voltage which directly addresses the issue of separate control of ion flux and ion energy in dual frequency capacitively coupled radio frequency plasmas.
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.
Resumo:
Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and manmade biomes.
Resumo:
Many of the challenges faced in health care delivery can be informed through building models. In particular, Discrete Conditional Survival (DCS) models, recently under development, can provide policymakers with a flexible tool to assess time-to-event data. The DCS model is capable of modelling the survival curve based on various underlying distribution types and is capable of clustering or grouping observations (based on other covariate information) external to the distribution fits. The flexibility of the model comes through the choice of data mining techniques that are available in ascertaining the different subsets and also in the choice of distribution types available in modelling these informed subsets. This paper presents an illustrated example of the Discrete Conditional Survival model being deployed to represent ambulance response-times by a fully parameterised model. This model is contrasted against use of a parametric accelerated failure-time model, illustrating the strength and usefulness of Discrete Conditional Survival models.
Resumo:
The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely density dependent. Understanding the role of biodiversity in ecosystem functioning or addressing practical concerns, such as loss of predators owing to overharvesting, remains complicated because accurate predictions require detailed knowledge of the system and should be drawn from sound experimental evidence, not based on observations or generalized models.
Resumo:
Habitats composed of living 'ecosystem engineers', such as mussels, are subject to direct and indirect interactions with organisms that live among them. These interactions may affect the presence and structure of habitat, and hence, the associated taxa. We examined the direct effects of epibiotic algae on the Survival, biomass and recruitment of mussels (Mytilits L.) on the west coast of Ireland. A field experiment showed that the presence of epibiotic fucoid algae reduced the likelihood of survival of mussels during storms. We also found that the strength of attachment of mussels did not increase in the presence of epibionts. Another in situ experiment revealed that the presence of ephemeral epibiotic algal mats had no effect on the biomass of host mussels, suggesting no effect on mussel growth or production. The abundance of small mussels (
Resumo:
Purpose: To determine whether repression of a recently isolated, X-ray-responsive gene, DIR1, using antisense oligonucleotides could affect clonogenic cell survival and repair of DNA strand breaks and have a possible role in the mechanism underlying the phenomenon of 'induced radioresistance' (IRR).