957 resultados para Racionamento, PH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of sample components whose pI values are outside the pH gradient established by 101 hypothetical biprotic carrier ampholytes covering a pH 6-8 range was investigated by computer simulation under constant current conditions with concomitant constant electroosmosis toward the cathode. Data obtained with the sample being applied between zones of carrier ampholytes and on the anodic side of the carrier ampholytes were studied and found to evolve into zone structures comprising three regions between anolyte and catholyte. The focusing region with the pH gradient is bracketed by two isotachopheretic zone structures comprising selected sample and carrier components as isotachophoretic zones. The isotachophoretic structures electrophoretically migrate in opposite direction and their lengths increase with time due to the gradual isotachophoretic decay at the pH gradient edges. Due to electroosmosis, however, the overall pattern is being transported toward the cathode. Sample components whose pI values are outside the established pH gradient are demonstrated to form isotachophoretic zones behind the leading cation of the catholyte (components with pI values larger than 8) and the leading anion of the anolyte (components with pI values smaller than 6). Amphoteric compounds with appropriate pI values or nonamphoteric components can act as isotachophoretic spacer compounds between sample compounds or between the leader and the sample with the highest mobility. The simulation data obtained provide for the first time insight into the dynamics of amphoteric sample components that do not focus within the established pH gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

by Adolph S. Oko

Relevância:

20.00% 20.00%

Publicador:

Resumo:

by Adolph S. Oko

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dental erosion is a complication of gastro-oesophageal reflux disease (GORD) according to the Montreal consensus statement. However, GORD has not been comprehensively characterized in patients with dental erosions and pH-impedance measures have not been reported. Objectives: Characterize GORD in patients with dental erosions using 24-h multichannel intraluminal pH-impedance measurements (pH-MII) and endoscopy. Methods: This single-centre study investigated reflux in successive patients presenting to dentists with dental erosion using pH-MII and endoscopy. Results: Of the 374 patients, 298 (80%) reported GORD symptoms <2 per week, 72 (19%) had oesophagitis and 59 (16%) had a hiatal hernia. In the 349 with pH-MII the mean percentage time with a pH <4 (95% CI) was 11.0 (9.3–12.7), and 34.4% (31.9–36.9) for a pH <5.5, a critical threshold for dental tissue. The mean numbers of total, acidic and weakly acidic reflux episodes were 71 (63–79), 43 (38–49) and 31 (26–35), respectively. Of the reflux episodes, 19% (17–21) reached the proximal oesophagus. In 241 (69%) patients reflux was abnormal using published normal values for acid exposure time and reflux episodes. No significant associations between the severity of dental erosions and any reflux variables were found. The presence of GORD symptoms and of oesophagitis or a hiatal hernia was associated with greater reflux, but not with increased dental erosion scores. Conclusions: Significant oligosymptomatic gastro-oesophageal reflux occurs in the majority of patients with dental erosion. The degree of dental erosion did not correlate with any of the accepted quantitative reflux indicators. Definition of clinically relevant reflux parameters by pH-MII for dental erosion and of treatment guidelines are outstanding. Gastroenterologists and dentists need to be aware of the widely prevalent association between dental erosion and atypical GORD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Oesophageal clearance has been scarcely studied. AIMS Oesophageal clearance in endoscopy-negative heartburn was assessed to detect differences in bolus clearance time among patients sub-grouped according to impedance-pH findings. METHODS In 118 consecutive endoscopy-negative heartburn patients impedance-pH monitoring was performed off-therapy. Acid exposure time, number of refluxes, baseline impedance, post-reflux swallow-induced peristaltic wave index and both automated and manual bolus clearance time were calculated. Patients were sub-grouped into pH/impedance positive (abnormal acid exposure and/or number of refluxes) and pH/impedance negative (normal acid exposure and number of refluxes), the former further subdivided on the basis of abnormal/normal acid exposure time (pH+/-) and abnormal/normal number of refluxes (impedance+/-). RESULTS Poor correlation (r=0.35) between automated and manual bolus clearance time was found. Manual bolus clearance time progressively decreased from pH+/impedance+ (42.6s), pH+/impedance- (27.1s), pH-/impedance+ (17.8s) to pH-/impedance- (10.8s). There was an inverse correlation between manual bolus clearance time and both baseline impedance and post-reflux swallow-induced peristaltic wave index, and a direct correlation between manual bolus clearance and acid exposure time. A manual bolus clearance time value of 14.8s had an accuracy of 93% to differentiate pH/impedance positive from pH/impedance negative patients. CONCLUSIONS When manually measured, bolus clearance time reflects reflux severity, confirming the pathophysiological relevance of oesophageal clearance in reflux disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in carbon dioxide (CO2) and protons (H+) are the primary signals for breathing. Cells that sense changes in CO2/H+ levels and increase breathing accordingly are located in a region of the caudal medulla oblongata called the retrotrapezoid nucleus (RTN). Specifically, select RTN neurons are intrinsically pH sensitive and send excitatory projections to the respiratory rhythm generator to drive breathing. Glial cells in the RTN are thought to contribute to this respiratory drive, possibly by releasing ATP in response to increases in CO2/H+ levels. However, pH sensitivity of RTN glial cells has yet to be determined. Therefore, the goal of my thesis is to determine if acutely dissociated RTN cells can respond to changes in pH in isolation. To make this determination I used ratiometric fluorescent microscopy to measure intracellular calcium in dissociated RTN cells during changes in bath pH. I found that a small percentage of RTN cells (16%) respond to bath acidification from pH 7.3 to pH 6.9 with an increase in fluorescence indicating an increase in intracellular calcium. Preliminary electrophysiological findings suggest that responsive cells are unable to make action potentials, thus suggesting their identity to be glia. These results indicate that a subset of pH sensitive cells in the RTN are intrinsically pH sensitive and that glia cells may possibly play a role in central chemoreception.