936 resultados para Proteínas Quimioatraentes de Monócitos
Resumo:
Chromobacterium violaceum is a free-living bacillus, Gram-negative commonly found in water and sand of tropical and subtropical regions. One of its main characteristic it's the ability to produce the purple pigment named violacein, that shows countless biological activities. In 2003, the genome of this organism was totally sequenced and revealed important informations about the physiology of this bacteria. However, few post-genomics studies had been accomplished. This work evaluated the protein profile of C. violaceum cultivated in LB medium at 28ºC that allowed the identification and characterization of proteins related to a possible secretion system that wasn't identified and characterized yet in C. violaceum, to the quorum sensing system, to regulatory process of transcription and translation, stress adaptation and biotechnological potential. Moreover, the response of the bacteria to UVC radiation was evaluated. The comparison of the protein profile, analyzed through 2-D electrophoresis, of the control group versus the treatment group allowed the identification of 52 proteins that arose after stress induction. The obtained results enable the elaboration of a stress response pathway in C. violaceum generated by the UVC light. This pathway, that seems to be a general stress response, involves the expression of proteins related to cellular division, purine and pirimidine metabolism, heat chock or chaperones, energy supply, regulation of biofilm formation, transport, regulation of lytic cycle of bacteriophages, besides proteins that show undefined function. Despite the response present similarities with the classic SOS response of E. coli, we still cannot assert that C. violaceum shows a SOS-like response, mainly due to the absence of characterization of a LexA-like protein in this organism
Resumo:
The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response
Resumo:
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context
Resumo:
The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river
Resumo:
The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid
Resumo:
Butterflies are insects known, in a variety of environments and for easy visual identification. The adult form may be frequently found in flowers looking for nectar. However, for many species of Heliconius (Lepidoptera, Nymphalidae) to visit the flower also represents the collecting of pollen, an important source of protein for adults. The protein obtained from the pollen allows the maintenance of physiological processes that increase the performance of the individual, promoting greater longevity and egg production. For males, proteins can also be part in your investment in reproductive success and fitness of offspring through a nutritional contribution that is transferred to the female in the act of mating as a nuptial present. It is known that this protein contains essential to the performance of the female oviposition, however the proportion of content and specific importance to the monogamous and polygamous species is not known yet. Whereas the species studied in this work have different patterns of mating in the strategy was to verify a significant difference in the quality of the spermatophore, and H. erato and H. melpomene, on the amount of protein present in this structure, indicating a difference in investment between the male reproductive strategies
Resumo:
Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.
Resumo:
Toxoplasmosis is one zoonosis caused by Toxoplasma gondii protozoan. Goats, amongst the production animals, are one of the species most susceptible to this parasite, being one them main involved agents in ovine and goat abortions, determining great economic losses and implications for public health, since the presence it parasite in the products of goat origin, consist in one of the main sources of infection for the man. In this study 244 blood samples in 8 farms situated in 4 cities from the Sertão do Cabugi region, Rio Grande do Norte State, northeast of Brazil and, tested by ELISA assay. The results had shown a prevalence of 47.13% for anti- T. gondii antibodies and a significant association between positivity and variable evaluated as age, locality and property. The IgG avidity assay evaluated in 115 positive samples was carried to discriminate acute and chronic infection. Twelve samples (10.4%) had presented antibodies of low avidity while 103 (89.6%) presented high avidity antibodies; indicating that most of the animals was precocious exposure to the parasite. Significant difference was verified only for the variable sex. We also evaluate the capacity of recombinant adenoviruses codifying SAG1, SAG2, SAG3 and CMV in inducing activation of specific immune response in goat. These 109 animals received 109 pfu of the AdSAG1, AdSAG2, AdSAG3, AdCMV or PBS in vaccine protocol with 3 immunizations. Serum samples of the each animal, before and after mmunization, had been submitted to the ELISA. The results demonstrate that the immunizations had induced the production of IgG antibodies specific against T. gondii proteins
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
Control of human visceral leishmaniasis in endemic regions is hampered in part by the lack of knowledge with respect of the role reservoirs and vector. In addition, there is not yet an understanding of how non-symptomatic subclinical infection might influence the maintenance of infection in a particular locality. Of worrisome is the limited accessibility to medical care in places with emerging drug resistance. There is still no available protective vaccine either for humans or other reservoirs. Leishmania species are protozoa that express multiple antigens which are recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the causative agent of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T and T-dependent B cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second step screen for their ability to cause proliferation and IFN-γ responses of T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The clones encoded part of the coding sequence of glutamine synthetase, transitional endoplasmic reticulum ATPase, elongation factor 1γ, kinesin K-39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these protein Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines against Leishmania
Resumo:
Several clinic evaluations have been possible with radiobiocomplexes labeled with technetium-99m (99mTc). Some natural and synthetic drugs are capable of to interfere on the labeling of blood constituents with 99mTc, as well as on the biodistribution of radiobiocomplexes. Authors have also reported about the toxicity of several natural products. The aim of this study was to compare the effects of the Mentha crispa (hortelã) and of the Hypericum perforatum (hipérico) in different experimental models. On the labeling of red blood cells (RBC) and plasma and cellular proteins with 99mTc, both extracts were capable of to decrease the radioactivity percentage on the cellular compartment and on the fixation on plasma and cellular proteins. On the morphometry of the RBC, only the hortelã was capable to alter the shape and the perimeter/area ratio of the RBC. On the biodistribution of the radiobiocomplex sodium pertechnetate (Na99mTcO4), the hortelã increased the Na99mTcO4 distribution in the kidney, spleen, liver and thyroid, meanwhile the hipérico decreased the Na99mTcO4 distribution in the bone, stomach, lungs and thyroid, and increased the Na99mTcO4 distribution in the pancreas. On the bacterial cultures survival, the hipérico was capable of to protect the bacteria against the stannous chloride (SnCl2) effect. The hipérico did not alter the topology of plasmidial DNA and did not protect the plasmidial DNA against the SnCl2 action. Probably, the effects presented by both extracts could be due to chemical compounds of the extracts that could alter the morphology of the RBC and the plasma membrane ions transport, and/or by phytocomplexes that could be formed with different effects dependent on the biological system considered
Resumo:
Technetium-99m (99mTc) has been used to obtain several radiobiocomplexes utilized to aid in the diagnosis of diseases. Blood constituents, as red blood cells (RBC) and plasma proteins, have been labeled with 99mTc. Natural and synthetic drugs can alter the labeling of these constituents. The aim of this work was to investigate the possibility of a Buzhong YiQi Wan extract to alter (i) the labeling of blood constituents with 99mTc, (ii) the RBC morphology, and (iii) osmotic fragility of RBC withdrawn from Wistar rats. The data showed that the BYQW extract (i) could affect labeling of blood constituintes with 99mTc, (ii) could affect the membrane integrity decreasing the osmotic resistance and (iii) could not alter the shape of RBC. Probably, these findings would be associated with properties of the substances present in the aqueous extract of BYQW. This study has multiple disciplinary aspects in knowledge areas: Radiobiology, Botanic, Phytotherapy and Haematology
Resumo:
To aureus α-HL channel, we used the cysteine-scanning mutagenesis technique. Twenty-four mutants were produced from the substitution of a single aminoacid of the primary structure of the α-HL pro this yzed after the incorporation of a mutant channel in planar lipid bilayer membranes. The modified proteins were studied in the absence and presence of watersoluble specific sulphydryl-specific reagents, in order to introduce a strong positive or negative harge at positions of substitution. The introduction of a negative charge in the stem region onverted the selectivity of the channel from weak anionic to more cationic. However, the troduction of a positive charge increased its selectivity to the anion. The degree of these alterations was inversely dependent on the channel radius at the position of the introduced harge (selectivity). As to the asymmetry of the conductance-voltage, the influence of the harge was more complex. The introduction of the negative charge in the stem region (the trans art of the pore) provoked a decrease. The intensity of these alterations depended on the radius, and on the type of free charge at the pore entrance. These results suggest that the free charge at surrounds the pore wall is responsible for the cation-anion selectivity of the channel. The istribution of the charges between the entrances is crucial for determining the asymmetry of e conductance-voltage curves. We hope that these results serve as a model for studies with other nanometric channels, in biological or planar lipid bilayer membranes or in iotechnological applications