960 resultados para Programmed Cell Death


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas MAP - Bioplant

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Genética Molecular

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Molecular e Saúde).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surgical procedures such as osteotomy and hip replacement involve the cutting of bone with the aid of various manual and powered cutting instruments including manual and powered bone saws. The basic mechanics of bone sawing processes are consistent with most other material sawing processes such as for wood or metal. Frictional rubbing between the blade of the saw and the bone results in the generation of localised heating of the cut bone. Research studies have been carried out which consider the design of the bone saw which deals with specifics of the saw teeth geometry and research which examines the effect of drilling operations on heating of the bone has shown that elevated temperatures will occur from frictional overheating. This overheating in localised areas is known to have an impact on the rate of healing of the bone post operation and the sharpness life of the blade. The purpose of this study was to measure the temperature at three zones at fixed intervals of 3mm, 6mm, and 9mm away from the cutting zone. It should be noted that it was the first time that this measurement technique was used to measure the temperature gradient through the bone specimen thereby establishing the extent to which clinicians are experiencing thermal injury during sawing of bone while using a reciprocating saw. The effect of various cutting feed rate on temperature elevation was also investigated in this research. The results showed that there will be a region of bone at least 9mm either side of the cutting blade experiencing thermal injury as temperatures in this region exceeded the threshold temperature of 44°C for necrosis (cell death).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-kappaB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-kappaB, however, delayed activation of NF-kappaB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-kappaB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University of St. Andrews, United Kingdom, from November 2007 until January 2008. Therapeutic transgene expression is a valuable strategy to counteract the limitations associated with oncolytic adenoviruses. Late phase expression is desirable to avoid early cell death for proper virus production. In this 3 months-collaboration, we have constructed a late expression system based on ribosome skipping downstream fiber protein and compared it with a splicing-based method of late gene expression. Despite expressing high amounts of the transgene when utilizing the ribosome skipping-system, flow cytomety assays indicate a delayed transgene-expression kinetics compared with the splicing-based one. Furthermore, when using the ribosome skipping system not only fiber protein expression is more altered but also viral production. These results suggest splicing-based expression strategy as a more suitable system for expression of transgenes late in the viral life cycle of an oncolytic adenovirus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El limfoma de cèl•lules de mantell (LCM) és un limfoma de cèl•lules B incurable que presenta sobreexpressió de ciclina D1. Això fa necessari el desenvolupament de noves teràpies. Els gens supressors de tumors estan alterats en càncer pel silenciament epigenètic aberrant, com a conseqüència de la desacetilació de les histones dels seus promotors. Els inhibidors de les desacetilases d'histones (HDACi) són nous compostos amb resultats prometedors per al tractament de tumors. L'objectiu principal, i que ha durat 7 mesos, va ser analitzar l'activitat antitumoral de l'àcid hidroxàmic suberoilanílid (SAHA, vorinostat), un HDACi en fase d'assajos clínics per al tractament de varis tumors, en cèl•lules de LCM. Es va analitzar la sensibilitat al SAHA (Merck Pharmaceuticals) en nou línies cel•lulars humanes de LCM, que es diferenciaven en les alteracions genètiques, les característiques replicatives i la sensibilitat als fàrmacs; i cèl•lules primàries de 6 pacients. El SAHA va presentar un efecte citotòxic heterogeni amb DL50 (Dosi Letal 50) de 3.25 μM a &25 μM amb 24 d'incubació. Aquest efecte citotòxic s'incrementava notablement després de 48 hores d'incubació assolint una DL50 de 0.34 a 5.69 μM. Cal destacar que 5 dels 6 casos de les mostres primàries de LCM van mostrar una elevada sensibilitat (DL50 & 8.07 μM). A nivell mecanistic, el SAHA va augmentar l'acetilació de les histones H3 i H4, i va disminuir els nivells de proteïna de la ciclina D1 i c-Flip. La citometria de flux i els anàlisis per Western Blot van posar de manifest que l'efecte citotòxic del SAHA es dóna a través de l'activació de la via mitocondrial de mort cel•lular i la cascada de caspases. El SAHA indueix l'expressió transcripcional de la proteïna proapoptòtica Bmf. Aquests resultats suggereixen que el SAHA podria ser una nova teràpia prometedora per al tractament del LCM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autophagy or "self eating" is frequently activated in tumor cells treated with chemotherapy or irradiation. Whether autophagy represents a survival mechanism or rather contributes to cell death remains controversial. To address this issue, the role of autophagy in radiosensitive and radioresistant human cancer cell lines in response to gamma-irradiation was examined. We found irradiation-induced accumulation of autophagosomes accompanied by strong mRNA induction of the autophagy-related genes beclin 1, atg3, atg4b, atg4c, atg5, and atg12 in each cell line. Transduction of specific target-siRNAs led to down-regulation of these genes for up to 8 days as shown by reverse transcription-PCR and Western blot analysis. Blockade of each autophagy-related gene was associated with strongly diminished accumulation of autophagosomes after irradiation. As shown by clonogenic survival, the majority of inhibited autophagy-related genes, each alone or combined, resulted in sensitization of resistant carcinoma cells to radiation, whereas untreated resistant cells but not sensitive cells survived better when autophagy was inhibited. Similarly, radiosensitization or the opposite was observed in different sensitive carcinoma cells and upon inhibition of different autophagy genes. Mutant p53 had no effect on accumulation of autophagosomes but slightly increased clonogenic survival, as expected, because mutated p53 protects cells by conferring resistance to apoptosis. In our system, short-time inhibition of autophagy along with radiotherapy lead to enhanced cytotoxicity of radiotherapy in resistant cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. RECENT FINDINGS: Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. SUMMARY: Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To determine the genomic polymorphism and biological properties present in HIV-1 Brazilian isolates, were analyzed five viral isolates obtained from patients residing in Rio de Janeiro (P1 and P5), São Paulo (P3) and Bahia (P2 and P4) states. For each viral isolate in vitro characteristics such as replication rate, syncytium-inducing capacity and cell death were observed in lymphoblastoid (H9, CEM and peripheral blood mononuclear cells) as well as monocytoid (U937) cells. In addition, the evaluation of the restriction fragment lenght polymorphism of these isolates was also performed using a panel of endonucleases such as Hind III, Bgl II, Sac I, Pst I, Kpn I and Eco RI. One of the isolates (P1), showed the highest phenotypic and genotypic divergence, when compared to others. The results found suggest a HIV heterogeneity in Brazil similar to that already described in other regions of the world.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.