949 resultados para Prehistoric navigation
Resumo:
Funded by Road services Northern Ireland, Jacobs and Headland Archaeology
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.
Resumo:
Waterways have many more ties with society than as a medium for the transportation of goods alone. Waterway systems offer society many kinds of socio-economic value. Waterway authorities responsible for management and (re)development need to optimize the public benefits for the investments made. However, due to the many trade-offs in the system these agencies have multiple options for achieving this goal. Because they can invest resources in a great many different ways, they need a way to calculate the efficiency of the decisions they make. Transaction cost theory, and the analysis that goes with it, has emerged as an important means of justifying efficiency decisions in the economic arena. To improve our understanding of the value-creating and coordination problems for waterway authorities, such a framework is applied to this sector. This paper describes the findings for two cases, which reflect two common multi trade-off situations for waterway (re)development. Our first case study focuses on the Miami River, an urban revitalized waterway. The second case describes the Inner Harbour Navigation Canal in New Orleans, a canal and lock in an industrialized zone, in need of an upgrade to keep pace with market developments. The transaction cost framework appears to be useful in exposing a wide variety of value-creating opportunities and the resistances that come with it. These insights can offer infrastructure managers guidance on how to seize these opportunities.
Resumo:
[EN]Polygonal meshes are powerful structures to represent geometric information of the Earth’s surface. In particular, triangle meshes have been massively used as a reliable way to efficiently represent the land surface with real time responses in virtual navigation. In this work we present new ideas for the underlying treatment of a mesh that improve efficiency and quality in the navigation.
Resumo:
Ancient starch analysis is a microbotanical method in which starch granules are extracted from archaeological residues and the botanical source is identified. The method is an important addition to established palaeoethnobotanical research, as it can reveal ancient microremains of starchy staples such as cereal grains and seeds. In addition, starch analysis can detect starch originating from underground storage organs, which are rarely discovered using other methods. Because starch is tolerant of acidic soils, unlike most organic matter, starch analysis can be successful in northern boreal regions. Starch analysis has potential in the study of cultivation, plant domestication, wild plant usage and tool function, as well as in locating activity areas at sites and discovering human impact on the environment. The aim of this study was to experiment with the starch analysis method in Finnish and Estonian archaeology by building a starch reference collection from cultivated and native plant species, by developing sampling, measuring and analysis protocols, by extracting starch residues from archaeological artefacts and soils, and by identifying their origin. The purpose of this experiment was to evaluate the suitability of the method for the study of subsistence strategies in prehistoric Finland and Estonia. A total of 64 archaeological samples were analysed from four Late Neolithic sites in Finland and Estonia, with radiocarbon dates ranging between 2904 calBC and 1770 calBC. The samples yielded starch granules, which were compared with the starch reference collection and descriptions in the literature. Cereal-type starch was identified from the Finnish Kiukainen culture site and from the Estonian Corded Ware site. The samples from the Finnish Corded Ware site yielded underground storage organ starch, which may be the first evidence of the use of rhizomes as food in Finland. No cereal-type starch was observed. Although the sample sets were limited, the experiment confirmed that starch granules have been preserved well in the archaeological material of Finland and Estonia, and that differences between subsistence patterns, as well as evidence of cultivation and wild plant gathering, can be discovered using starch analysis. By collecting large sample sets and addressing the three most important issues – preventing contamination, collecting adequate references and understanding taphonomic processes – starch analysis can substantially contribute to research on ancient subsistence in Finland and Estonia.
Resumo:
International audience
Resumo:
Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.
Resumo:
The role of odors in the long-distance navigation of birds has elicited intense debate for more than half a century. Failure to resolve many of the issues fueling this debate is due at least in part to the absence of controls for a variety of non-specific effects that odors have on the navigational process. The present experiments were carried out to investigate whether the olfactory inputs are involved only in “activation” of neuronal circuitry involved in navigation or are also playing a role in providing directional information. Experienced adult pigeons were exposed to controlled olfactory stimuli during different segments of the journey (release site vs. displacement + release site). Protein levels of IEGs (immediate early genes used to mark synaptic activity) were analyzed in areas within the olfactory/navigation avian circuitry. The results indicate that 1) exposure to natural odors at the release site (and not before) elicit greater activation across brain regions than exposure to filtered air, artificial odors, and natural odors along the entire outward journey (from home to the release site, inclusive); 2) activation of the piriform cortex in terms of odor discrimination is lateralized; 3) activation of the navigation circuitry is achieved by means of lateralized activation of piriform cortex neurons. Altogether, the findings provide the first direct evidence that activation of the avian navigation circuitry is mediated by asymmetrical processing of olfactory input occurring in the right piriform cortex.
Resumo:
Telepresence robots have emerged as a new means of interaction in remote environments. However, the use of such robots is still limited due to safety and usability issues when operating in human-like environments. This work addresses these issues by enhancing the robot navigation through a collaborative control method that assists the user to negotiate obstacles. The method has been implemented in a commercial telepresence robot and a user study has been conducted in order to test the suitability of our approach.
Resumo:
Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence.