977 resultados para Polymer blend


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white electroluminescent single polymer system with both high electroluminescence efficiency and excellent color rendering index (CRI) value is developed by covalently attaching blue, green, and red dopant units as individual light-emitting species to the side chain of polyfluorene as individual polymer host. A luminous efficiency of 8.6 cd A(-1), CIE coordinates of (0.33, 0.36) and CRI value of 88 was demonstrated with their single-layer devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to clarify the effects of phenols on properties of polyesters, the blends of poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) with 4,4'-dihydroxydiphenylpropane (BPA) and p-tert-butylphenol (TBP) were studied. The FTIR spectra revealed that there was strong hydrogen-bond (H-bond) interaction between PHBV and both phenols. By evaluating the fraction of H-bonded C = O in the blend, it was concluded that BPA showed a stronger tendency than TBP to form H-bonds with PHBV. Accordingly, BPA formed a stronger suppression than TBP on the crystallization of PHBV. When 30 wt% BPA or 50 wt% TBP were added into PHBV, the crystallization of PHBV was completely suppressed in the DSC cooling scan. As the phenol content was increased, the T-g of PHBV/TBP blend decreased while the T-g of PHBV/BPA blend increased. This difference indicated that TBP and BPA acted as plasticizer and physical crosslinking agent, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation by FTIR spectroscopy was undertaken on blends of poly(propylene carbonate) (PPC) and bisphenol A (BPA). It provided direct evidence of the hydrogen bond (H-bond) between BPA O-H groups and PPC C=O groups. Using a curve-fitting method, qualitative as well as quantitative information concerning this H-bond interaction was obtained. The inter-H-bond in PPC/BPA blends was weaker than the self-H-bond in BPA. The absorptivities of the free and the H-bonded C=O groups were nearly equal. The fraction of H-bonded C=O in the blends increased with BPA content and leveled off at a value close to 40%. Finally, FTIR-temperature measurements of pure PPC and a representative blend were reported: by monitoring the peak areas of C=O absorptions, the dissociation of the inter-H-bonds and the thermal degradation of PPC were observed. It revealed that the presence of BPA clearly retarded the thermal degradation of PPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first example of one-dimensional organic-inorganic polymetallic coordination polymer based on heptamolybdate anions, formulated (NH4)[Cu(en)(2)][Na(en)Cu(en)(2)(H2O)(Mo7O24)].4H(2)O (en = ethylenediamine) (1) has been hydrothermally synthesized and characterized by element analysis, IR, EPR, CV and single crystal X-ray diffraction. The structure of 1 is fabricated by self-assembly of integrated heptamolybdic anions without collapse of primary structure and copper-ethylenediamine(en) coordination groups into one-dimensional zigzag-shaped chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new coordination polymer [Cd-2(1,10'-phen)(2)(betc)(H2O)](n) (1) (betc = benzene-1,2,4,5-tetracarboxylate, 1,10'-phen = 1,10'-phenanthroline) was hydrothermally synthesized from CdCl2.2.5H(2)O, H(4)betc and 1,10'-phen at 160 degreesC. It was characterized by IR, XPS, TG and single-crystal X-ray diffraction. Compound 1 possesses infinite chair-like chains which construct 3D framework through pi-pi interactions and the hydrogen bond interactions. The fluorescent spectrum study shows that compound 1 exhibits blue fluorescent emission in the solid at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simultaneous reduction SO42- to S2- by 2,5-pyridinedicarboxylate under hydrothermal conditions produced a new binuclear copper(II) coordination polymer [CuS(4,4'-bipy)](n) (4,4-bipy = 4,4'-bipyridine) (1). Single crystal X-ray analysis revealed that compound I consisted of sulfur-bridged binuclear copper(II) units with Cu-Cu bonding which were combined with 4,4-bipy to generate a three-dimensional network constructed from mutual interpenetration of two-dimensional (6,3) nets. Crystal data for 1:C10H8CuN2S, tetragonal 14(1)/acd, a = 14.0686(5) Angstrom, b = 14.0686(5) Angstrom, c = 38.759(2) Angstrom, Z = 32. Other characterizations by elemental analysis, IR, EPR and TGA analysis were also described in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a simple and versatile approach to micropatterning a metal film, which is evaporated on a Si substrate coated with polymer, is demonstrated by the use of a prepatterned epoxy mold. The polymer interlayer between the metal and the Si substrate is found important for the high quality pattern. When the metal-polymer-Si sandwich structure is heated with the temperature below T-m but above T-g of the polymer, the plastic deformation of the polymer film occurs under sufficiently high pressure applied. It causes the metal to crack locally or weaken along the pattern edges. Further heating while applying a lower pressure results in the formation of an intimate junction between the epoxy stamp and the metal film. Under these conditions the epoxy cures further, ensuring adhesion between the stamp and the film. The lift-off process works because the adhesion between the epoxy and the metal film is stronger than that between the metal film and the polymer. A polymer field effect transistor is fabricated in order to demonstrate potential applications of this micropatterning approach.