984 resultados para Polinomio de Jones


Relevância:

10.00% 10.00%

Publicador:

Resumo:

460 pgs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ENGLISH: The map method, the Jones method, the variance-covariance method, and the Skellam method were used to study the migrations of tagged yellowfin tuna released off the southern coast of Mexico in 1960 and 1969. The first three methods are all useful, and each presents information which is complementary to that presented by the others. The Skellam method, as used in this report, is less useful. The movements of the tagged fish released in 1960 appeared to have been strongly directed, but this was probably caused principally by the distribution of the fishing effort. The effort was much more widely distributed in 1970, and the movements of the fish released in 1969 appeared to have been much less directed. The correlation coefficients derived from the variance-covariance method showed that it was not random, however. The small fish released in the Acapulco and 10°N-100°W areas in 1969 migrated to the Manzanillo area near the beginning of February 1970. The medium and large fish released in the same areas in the same year tended to migrate to the southeast throughout the first half of 1970, however. SPANISH: El método de mapas, el de Jones, el de la variancia-covariancia y el de Skellam fueron empleados para estudiar las migraciones del atún aleta amarilla marcado y liberado frente a la costa meridional de México en 1960 y 1969. Los tres primeros métodos son todos útiles, y cada uno presenta información que complementa la presentada por los otros. El método de Skellam, conforme se usa en este informe, es menos útil. Parece que los desplazamientos de los peces marcados y liberados en 1960 hubieran sido fuertemente orientados, pero ésto probablemente fue causado principalmente por la distribución del esfuerzo de pesca. El esfuerzo se distribuyó más extensamente en 1970, y parece que los desplazamientos de los peces liberados en 1969 fueran menos orientados. Los coeficientes de correlación derivados del método variancia-covariancia indicaron, sin embargo, que no eran aleatorios. Los peces pequeños liberados en las áreas de Acapulco y los 10°N-100°W en 1969 migraron al área de Manzanillo a principios de febrero 1970. Los peces medianos y grandes liberados en las mismas áreas en el mismo año tuvieron, sin embargo, la tendencia a desplazarse al sudeste durante el primer semestre de 1970. (PDF contains 64 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The common 2652 6N del variant in the CASP8 promoter (rs3834129) has been described as a putative low-penetrance risk factor for different cancer types. In particular, some studies suggested that the deleted allele (del) was inversely associated with CRC risk while other analyses failed to confirm this. Hence, to better understand the role of this variant in the risk of developing CRC, we performed a multi-centric case-control study. In the study, the variant 2652 6N del was genotyped in a total of 6,733 CRC cases and 7,576 controls recruited by six different centers located in Spain, Italy, USA, England, Czech Republic and the Netherlands collaborating to the international consortium COGENT (COlorectal cancer GENeTics). Our analysis indicated that rs3834129 was not associated with CRC risk in the full data set. However, the del allele was under-represented in one set of cases with a family history of CRC (per allele model OR = 0.79, 95% CI = 0.69-0.90) suggesting this allele might be a protective factor versus familial CRC. Since this multi-centric case-control study was performed on a very large sample size, it provided robust clarification of the effect of rs3834129 on the risk of developing CRC in Caucasians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas- ing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi- crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coor- dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair po- tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface re- spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one- dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ENGLISH: Data from tagging experiments initiated during 1968-1974 in the eastern Pacific Ocean were used to study the migrations of yellowfin tuna in that area. The map method, the parallel-area method, and the Jones method were employed in the analyses. The map method gives a useful impression of the distances and directions traveled, but does not express these parameters in quantitative terms. The parallel-area method is particularly useful for determining whether or not there is net movement in particular directions, i.e. inshore-offshore, east-west, or north-south. The first of these is of particular interest, as the incidence of smaller fish is much higher in the catches made inshore than in those made offshore, and it is desirable to know whether this is due to relatively greater abundance or to relatively greater vulnerability of the smaller fish in the inshore areas. If the former were the case an offshore movement of the fish as they grew older would probably be detected. Such a movement was not detected, however, so it appears likely that the differences in the catches of smaller fish in the inshore and offshore areas are due mainly to differences in vulnerability. Few or no east-west or north-south tendencies in the movements of the fish were detected. The Jones method indicates that the movement is not random, but reveals no pronounced directional tendencies. SPANISH: Se emplearon los datos de los experimentos de marcado, iniciados en el Océano Pacífico oriental durante 1968-1974 para estudiar los desplazamientos del atún aleta amarilla en esa zona. En los análisis se emplearon los métodos cartográficos, de las zonas paralelas y de Jones. El método cartográfico ofrece una idea útil sobre la distancia y dirección de los desplazamientos, pero no expresa estos parámetros en términos cuantitativos. El método de las zonas paralelas es particularmente conveniente para determinar si existe o nó un desplazamiento neto en una dirección especial, es decir, hacia la costa-fuera de la costa, este-oeste o norte-sur. El primero de éstos tiene un interés especial, ya que la incidencia de peces más pequeños es muy superior en las capturas realizadas cerca de la costa que en las de mar afuera, y se desea conocer si ésto se debe a la abundancia relativamente superior o a las vulnerabilidad relativamente mayor de los pequeños peces en las zonas costeras. Si el caso fuera el primero, se podría descubrir probablemente un movimiento de los peces mar afuera a medida que crecen. Sin embargo, no se ha descubierto tal movimiento, así que es probable que las diferencias en las capturas de peces pequeños en las zonas costeras y mar afuera se deban principalmente a diferencias en la vulnerabilidad. Se descubrió poca o ninguna tendencia en los peces a desplazarse este-oeste o norte-sur. El método de Jones indica que el movimiento no es aleatorio, pero no revela una tendencia pronunciada a orientarse direccionalmente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I investigate some aspects of the thermal budget of pahoehoe lava flows. This is done with a combination of general field observations, quantitative modeling, and specific field experiments. The results of this work apply to pahoehoe flows in general, even though the vast bulk of the work has been conducted on the lavas formed by the Pu'u 'O'o - Kupaianaha eruption of Kilauea Volcano on Hawai'i. The field observations rely heavily on discussions with the staff of the United States Geological Survey's Hawaiian Volcano Observatory (HVO), under whom I labored repeatedly in 1991-1993 for a period totaling about 10 months.

The quantitative models I have constructed are based on the physical processes observed by others and myself to be active on pahoehoe lava flows. By building up these models from the basic physical principles involved, this work avoids many of the pitfalls of earlier attempts to fit field observations with "intuitively appropriate" mathematical expressions. Unlike many earlier works, my model results can be analyzed in terms of the interactions between the different physical processes. I constructed models to: (1) describe the initial cooling of small pahoehoe flow lobes and (2) understand the thermal budget of lava tubes.

The field experiments were designed either to validate model results or to constrain key input parameters. In support of the cooling model for pahoehoe flow lobes, attempts were made to measure: (1) the cooling within the flow lobes, (2) the amount of heat transported away from the lava by wind, and (3) the growth of the crust on the lobes. Field data collected by Jones [1992], Hon et al. [1994b], and Denlinger [Keszthelyi and Denlinger, in prep.] were also particularly useful in constraining my cooling model for flow lobes. Most of the field observations I have used to constrain the thermal budget of lava tubes were collected by HVO (geological and geophysical monitoring) and the Jet Propulsion Laboratory (airborne infrared imagery [Realmuto et al., 1992]). I was able to assist HVO for part of their lava tube monitoring program and also to collect helicopterborne and ground-based IR video in collaboration with JPL [Keszthelyi et al., 1993].

The most significant results of this work are (1) the quantitative demonstration that the emplacement of pahoehoe and 'a'a flows are the fundamentally different, (2) confirmation that even the longest lava flows observed in our Solar System could have formed as low effusion rate, tube-fed pahoehoe flows, and (3) the recognition that the atmosphere plays a very important role throughout the cooling of history of pahoehoe lava flows. In addition to answering specific questions about the thermal budget of tube-fed pahoehoe lava flows, this thesis has led to some additional, more general, insights into the emplacement of these lava flows. This general understanding of the tube-fed pahoehoe lava flow as a system has suggested foci for future research in this part of physical volcanology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galaxies evolve throughout the history of the universe from the first star-forming sources, through gas-rich asymmetric structures with rapid star formation rates, to the massive symmetrical stellar systems observed at the present day. Determining the physical processes which drive galaxy formation and evolution is one of the most important questions in observational astrophysics. This thesis presents four projects aimed at improving our understanding of galaxy evolution from detailed measurements of star forming galaxies at high redshift.

We use resolved spectroscopy of gravitationally lensed z ≃ 2 - 3 star forming galaxies to measure their kinematic and star formation properties. The combination of lensing with adaptive optics yields physical resolution of ≃ 100 pc, sufficient to resolve giant Hii regions. We find that ~ 70 % of galaxies in our sample display ordered rotation with high local velocity dispersion indicating turbulent thick disks. The rotating galaxies are gravitationally unstable and are expected to fragment into giant clumps. The size and dynamical mass of giant Hii regions are in agreement with predictions for such clumps indicating that gravitational instability drives the rapid star formation. The remainder of our sample is comprised of ongoing major mergers. Merging galaxies display similar star formation rate, morphology, and local velocity dispersion as isolated sources, but their velocity fields are more chaotic with no coherent rotation.

We measure resolved metallicity in four lensed galaxies at z = 2.0 − 2.4 from optical emission line diagnostics. Three rotating galaxies display radial gradients with higher metallicity at smaller radii, while the fourth is undergoing a merger and has an inverted gradient with lower metallicity at the center. Strong gradients in the rotating galaxies indicate that they are growing inside-out with star formation fueled by accretion of metal-poor gas at large radii. By comparing measured gradients with an appropriate comparison sample at z = 0, we demonstrate that metallicity gradients in isolated galaxies must flatten at later times. The amount of size growth inferred by the gradients is in rough agreement with direct measurements of massive galaxies. We develop a chemical evolution model to interpret these data and conclude that metallicity gradients are established by a gradient in the outflow mass loading factor, combined with radial inflow of metal-enriched gas.

We present the first rest-frame optical spectroscopic survey of a large sample of low-luminosity galaxies at high redshift (L < L*, 1.5 < z < 3.5). This population dominates the star formation density of the universe at high redshifts, yet such galaxies are normally too faint to be studied spectroscopically. We take advantage of strong gravitational lensing magnification to compile observations for a sample of 29 galaxies using modest integration times with the Keck and Palomar telescopes. Balmer emission lines confirm that the sample has a median SFR ∼ 10 M_sun yr^−1 and extends to lower SFR than has been probed by other surveys at similar redshift. We derive the metallicity, dust extinction, SFR, ionization parameter, and dynamical mass from the spectroscopic data, providing the first accurate characterization of the star-forming environment in low-luminosity galaxies at high redshift. For the first time, we directly test the proposal that the relation between galaxy stellar mass, star formation rate, and gas phase metallicity does not evolve. We find lower gas phase metallicity in the high redshift galaxies than in local sources with equivalent stellar mass and star formation rate, arguing against a time-invariant relation. While our result is preliminary and may be biased by measurement errors, this represents an important first measurement that will be further constrained by ongoing analysis of the full data set and by future observations.

We present a study of composite rest-frame ultraviolet spectra of Lyman break galaxies at z = 4 and discuss implications for the distribution of neutral outflowing gas in the circumgalactic medium. In general we find similar spectroscopic trends to those found at z = 3 by earlier surveys. In particular, absorption lines which trace neutral gas are weaker in less evolved galaxies with lower stellar masses, smaller radii, lower luminosity, less dust, and stronger Lyα emission. Typical galaxies are thus expected to have stronger Lyα emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. This result has important implications for the hypothesis that early galaxies were responsible for cosmic reionization. We additionally show that fine structure emission lines are sensitive to the spatial extent of neutral gas, and demonstrate that neutral gas is concentrated at smaller galactocentric radii in higher redshift galaxies.

The results of this thesis present a coherent picture of galaxy evolution at high redshifts 2 ≲ z ≲ 4. Roughly 1/3 of massive star forming galaxies at this period are undergoing major mergers, while the rest are growing inside-out with star formation occurring in gravitationally unstable thick disks. Star formation, stellar mass, and metallicity are limited by outflows which create a circumgalactic medium of metal-enriched material. We conclude by describing some remaining open questions and prospects for improving our understanding of galaxy evolution with future observations of gravitationally lensed galaxies.