986 resultados para Peat.
Resumo:
Sphagnum moss is the dominant plant type in modern boreal and (sub)arctic ombrotrophic bogs and is of particular interest due to its sensitivity to climate and its important role in wetland biogeochemistry. Here we reconstruct the occurrence of Sphagnum moss - and associated biogeochemical change - within a thermally immature, early Paleogene (~55 Ma) lignite from Schöningen, NW Germany using a high-resolution, multi-proxy approach. Changes in the abundance of Sphagnum-type spores and the C23/C31n-alkane ratio indicate the expansion of Sphagnum moss within the top of the lignite seam. This Sphagnum moss expansion is associated with the development of waterlogged conditions, analogous to what has been observed within modern ombrotrophic bogs. The similarity between biomarkers and palynology also indicates that the C23/C31n-alkane ratio may be a reliable chemotaxonomic indicator for Sphagnum during the early Paleogene. The d13C value of bacterial hopanes and mid-chain n-alkanes indicates that a rise in water table is not associated with a substantial increase in aerobic methanotrophy. The absence of very low d13C values within the top of the seam could reflect either less methanogenesis or less efficient methane oxidation under waterlogged sulphate-rich conditions.
Resumo:
A compilation of basal dates of peatland initiation across the northern high latitudes, associated metadata including location, age, raw and calibrated radiocarbon ages, and associated references. Includes previously published datasets from sources below as well as 365 new data points.
Resumo:
In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.
Resumo:
Sediment cores, mainly push-box samples, from a channel system of the Kiel Bay are described. The channel system, of glacial and fluviatile origin, is important for the distribution of heavy, salt-rich water entering from the North Sea through the Great Belt, Sediment erosion and transport in the channels is due entirely to currents, because the bottom lies too deep for wave action. The sediments of these channels proude information about current velocities and their frequencies. Grain-size, minor sediment structures and thickness of the sediments vary remarkably. Nevertheless, for those parts of the channels where stronger currents occur, some typical features can be shown. These include: small thickness of the marine sediments, erosional effects upon the underlying sediments, and poor sorting of the sediments, whereby fine and coarse fractions are mixed very intensively. Besides strong currents which effect the bottom configuration and deposits in the Fehmarn Belt, there must exist longer periods of low current action upon the bottom, although current measurements show that current velocities higher than 50 cm/sec at some meters above the bottom occur frequently during the year. In the channel to the west of the southern mouth of Great Belt, coarse sediments were found only in elongate, deep throughs within the channels. This is believed to be due to an acceleration of the entering tongues of heavy water as they flow downslope into the throughs. Minor structures of two sediment cores were made visible by X-ray photographs. These showed that the mixing of sand and clayey material is due partly to bottom organisms and that the mud, which appears 'homogeneous' to the bare eye, is built up of fine wavy laminae which are also partly destroyed by boring animals. At another location in the channel system, there was found a thin finegrained layer of marine sediment resting upon peat. Palynological dating of the peat shows that very little older sediment could have been eroded. The current velocities, therefore, must be too low for the movement of coarse material and erosion, but too high to allow the Sedimentation of a lot of fine-grained material.
Resumo:
In order to reconstruct regional vegetation changes and local conditions during the fen-bog transition in the Borsteler Moor (northwestern Germany), a sediment core covering the period between 7.1 and 4.5 cal kyrs BP was palynologically in vestigated. The pollen diagram demonstrates the dominance of oak forests and a gradual replacement of trees by raised bog vegetation with the wetter conditions in the Late Atlantic. At ~ 6 cal kyrs BP, the non-pollen palynomorphs (NPP) demonstrate the succession from mesotrophic conditions, clearly indicated by a number of fungal spore types, to oligotrophic conditions, indicated by Sphagnum spores, Bryophytomyces sphagni, and testate amoebae Amphitrema, Assulina and Arcella, etc. Four relatively dry phases during the transition from fen to bog are clearly indicated by the dominance of Calluna and associated fungi as well as by the increase of microcharcoal. Several new NPP types are described and known NPP types are identified. All NPP are discussed in the context of their palaeoecological indicator values.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site-specific palaeo-records are needed. Here we present a multi-proxy study of a 350-cm-long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain-size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, d13Corg) and stable water isotopes (d18O, dD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre-lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post-drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core-based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice-rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst-affected regions of the Arctic.
Resumo:
Organo-mineral fertilizers have been used to both meet plants’ nutritional needs and reduce producers’ reliance on mineral fertilizers. This practice improves both the use of nutrients by plants and the soil structure due to the organic matter in these fertilizers. This study aimed to determine the effect of organic matter sources in the composition of organomineral fertilizers and compare it to the effect of traditional mineral fertilizers when it comes to the initial development of sorghum. Research was carried out in a greenhouse at the Federal University of Uberlandia, in Uberlandia, Minas Gerais, Brazil. Sorghum seeds of grain-bearing simple hybrid 1G100 were used in the seeding process. The experiment followed a randomized complete block design in a 4 x 3 + 2 factorial arrangement. Factors included four levels (50, 75, 100 and 125% of 450 kg ha-1, which is the recommended dose for sorghum crops), three organic matter sources in the composition of the organomineral fertilizers (sewage sludge, filter cake, and peat), a control (100% mineral fertilizer), and an untreated check (no fertilizers). Each experimental plot consisted of four plants divided into two pots. Oxisol was used in all pots. Analyses were performed at 30 and 60 days after seeding (DAS) and targeted: plant height, stem diameter, chlorophyll A, chlorophyll B, and leaf area. After this period, plants were removed from the soil, and had their aerial parts isolated to be dried in an air-forced oven before measurement of their dry mass. Means of the organomineral fertilizers outperformed those of both control and untreated check plots in almost all variables at 30 DAS. The only exception was variable stem diameter, in which organomineral fertilizers outperformed untreated check plots only. Sorghum fertilized with organomineral fertilizers also showed positive results in the variables analyzed at 60 DAS: even with dose reduction, their means were similar to those found in control plots. Organomineral fertilizers had higher means in some variables, such as diameter and dry mass of the aerial part, than both control and untreated check plots. In the conditions set in this study and considering the variables herein reported, organomineral fertilizers can substitute mineral fertilizers in the initial development of sorghum, even with some dose reductions.
Resumo:
Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
Resumo:
Treatment of agricultural biodegradable wastes and by-products can be carried out using composting or vermicomposting, or a combination of both treatment methods, to create a growing medium amendment suitable for horticultural use. When compared to traditional compost-maturation, vermicompost-maturation resulted in a more mature growing medium amendment i.e. lower C/N and pH, with increased nutrient content and improved plant growth response, increasing lettuce shoot fresh and dry weight by an average of 15% and 14%, respectively. Vermicomposted horse manure compost was used as a growing medium amendment for lettuce and was found to significantly increase lettuce shoot and root growth, and chlorophyll content. When used as a growing medium amendment for tomato fruit production, vermicomposted spent mushroom compost increased shoot growth and marketable yield, and reduced blossom end rot in two independent studies. Vermicompost addition to peat-based growing media increased marketable yield by an average of 21%. Vermicompost also improved tomato fruit quality parameters such as acidity and sweetness. Fruit sweetness, as measured using Brix value, was significantly increased in fruits grown with 10% or 20% vermicompost addition by 0.2 in truss one and 0.3 in truss two. Fruit acidity (% citric acid) was significantly increased in plants grown with vermicompost by an average of 0.65% in truss one and 0.68% in truss two. These changes in fruit chemical parameters resulted in a higher tomato fruit overall acceptability rating as determined by a consumer acceptance panel. When incorporated into soil, vermicomposted spent mushroom compost increased plant growth and reduced plant stress under conditions of cold stress, but not salinity or heat stress. The addition of 20% vermicompost to cold-stressed plants increased plant growth by an average of 30% and increased chlorophyll fluorescence by an average of 21%. Compared to peat-based growing medium, vermicompost had consistently higher nutrient content, pH, electrical conductivity and bulk density, and when added to a peat-based growing medium, vermicomposted spent mushroom compost altered the microbial community. Vermicompost amendment increased the microbial activity of the growing medium when incorporated initially, and this increased microbial activity was observed for up to four months after incorporation when plants were grown in it. Vermicomposting was shown to be a suitable treatment method for agricultural biodegradable wastes and by-products, with the resulting vermicompost having suitable physical, chemical and biological properties, and resulting in increased plant growth, marketable yield and yield quality, when used as an amendment in peat-based growing medium.
Resumo:
Le site routier expérimental de Beaver Creek (62º 20’ 20’’ N – 140º 50’ 10’’ O) est sis sur la moraine de Beaver Creek pré datant le Dernier Maximum Glaciaire. Dans un périmètre d’un kilomètre carré, son relief, sa végétation, son sol et sa cryostratigraphie ont été étudiés avec une perspective géosystémique, afin d’en détailler la catena et sa structure. Ensuite, la cryostratigraphie a été interprétée pour suggérer un modèle d’évolution du paysage. Enfin, les changements récents y ont été intégrés en vue d’actualiser la tendance évolutive du géosystème. Il ressort de cet ouvrage que la durabilité du pergélisol est fortement appuyée par la présence des milieux humides dans les replats. Quelques affleurements de la moraine sont toujours visibles, quoique faiblement exprimés. Ils contiennent peu de glace et leur teneur en matière organique est mince. Quant aux dépressions, elles sont peu profondes et étendues. Non seulement elles ont hérité des sédiments érodés des crêtes, mais elles ont aussi fixé une quantité importante de glace et de matière organique par le truchement d’un pergélisol syngénétique (>15 m) généré par le climat et protégé par l’écosystème. Au moins un évènement de thermo-érosion est survenu avant le dernier stade d’aggradation syngénétique (Holocène), mais il n’a été que partiel. L’actuel réchauffement climatique menace d’engager un autre épisode de dégradation à l’échelle du bassin versant. Contrairement au changement climatique, l’utilisation du territoire provoque déjà la dégradation du pergélisol, mais de manière localisée seulement.
Resumo:
Le climat continental et froid de la Béringie lors de la glaciation du Wisconsinien a conduit à la formation d’une forme relique de pergélisol syngénétique nommé yedoma. Ces dépôts ont permis la préservation d’indicateurs environnementaux très diversifiés qui peuvent être employés pour reconstituer la dynamique climatique et écologique de la Béringie avant le dernier maximum glaciaire. À ce jour, peu d’études ont été réalisées au nord de la chaîne de montagnes Brooks (Alaska) et l’hétérogénéité écologique régionale de la Béringie Est lors de la glaciation du Wisonsinien reste mal définie. Ce mémoire porte sur une reconstitution paléoenvironnementale de plus de 39 ka du nord de l’Alaska réalisée à partir de sédiments provenant du Yedoma de la rivière Itkillik. Les objectifs sont (1) de reconstituer l’histoire de la végétation avec l’analyse pollinique; (2) de reconstituer les températures de juillet, le contraste de température saisonnier et l’ensoleillement de juillet avec la technique des analogues modernes et (3) de mettre les données biogéochimiques et glaciologiques du site en lien avec le climat reconstitué. L’étude montre que vers 35 ka BP (Interstade du Wisconsinien Moyen), des conditions climatiques semblables à l’actuel ont favorisé l’accumulation de tourbe riche en carbone organique. À partir de 29,7 ka BP, les températures de juillet reconstituées diminuent, alors que la continentalité du climat semble augmenter. Le contenu en glace des sédiments est plus alors plus faible et la pluie pollinique devient dominée par Poaceae, Artemisia et autres herbacés non graminoïdes. Ces indicateurs suggèrent des conditions environnementales plus xériques qu’aujourd’hui. Les anomalies isotopiques de 18O, 2H et l’excès de deutérium confirment un épisode d’avancée glaciaire (Wisconsinien Tardif). Après 17,9 ka BP (Tardiglaciaire), les températures de juillet et le contraste saisonnier augmentent. Les valeurs de contenu en carbone organique des sédiments sont plus élevées et la plus grande disponibilité en eau favorise l’établissement d’un couvert herbacé moderne dominé par les Cyperaceae.