994 resultados para Palmetto Sites Program


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of information available on the settlement characteristics of backfill in restored opencast coal mining sites and other similar earthworks projects has been undertaken. In addition, the methods of opencast mining, compaction controls, monitoring and test methods have been reviewed. To consider and develop the methods of predicting the settlement of fill, three sites in the West Midlands have been examined; at each, the backfill had been placed in a controlled manner. In addition, use has been made of a finite element computer program to compare a simple two-dimensional linear elastic analysis with field observations of surface settlements in the vicinity of buried highwalls. On controlled backfill sites, settlement predictions have been accurately made, based on a linear relationship between settlement (expressed as a percentage of fill height) against logarithm of time. This `creep' settlement was found to be effectively complete within 18 months of restoration. A decrease of this percentage settlement was observed with increasing fill thickness; this is believed to be related to the speed with which the backfill is placed. A rising water table within the backfill is indicated to cause additional gradual settlement. A prediction method, based on settlement monitoring, has been developed and used to determine the pattern of settlement across highwalls and buried highwalls. The zone of appreciable differential settlement was found to be mainly limited to the highwall area, the magnitude was dictated by the highwall inclination. With a backfill cover of about 15 metres over a buried highwall the magnitude of differential settlement was negligible. Use has been made of the proposed settlement prediction method and monitoring to control the re-development of restored opencase sites. The specifications, tests and monitoring techniques developed in recent years have been used to aid this. Such techniques have been valuable in restoring land previously derelict due to past underground mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Be and Nd isotope compositions and metal concentrations (Mn, Fe, Co, Ni, and Cu) of surface and subsurface ferromanganese hardground crusts from Ocean Drilling Program Leg 194 Marion Plateau Sites 1194 and 1196 provide new insights into the crusts' genesis, growth rates, and ages. Metal compositions indicate that the hardgrounds, which have grown on erosional surfaces in water depths of <400 m because of strong bottom currents, are not pure hydrogenetic precipitates. Nevertheless, the ratios between cosmogenic 10Be and stable 9Be in hardgrounds from the present-day seafloor at Site 1196 between 1 x 10**-7 and 1.5 x 10**-7 are within the range of values expected for Pacific seawater, which shows that the hardgrounds recorded the isotope composition of ambient seawater. This is also confirmed by their Nd isotope composition (epsilon Nd between -3 and 0). The 10Be/9Be ratios in the up to 30-mm-thick and partly laminated hardgrounds do not show a decrease with depth, which suggests high growth rates on the present-day seafloor. The subsurface crust at Site 1194 (117 m below the seafloor) grew during a sedimentation hiatus, when bottom currents in the late Miocene prevented sediment accumulation on the carbonate platform during a sea level lowstand. The age of 8.65 ± 0.50 Ma for this crust obtained from 10Be-based dating agrees well with the combined seismostratigraphic and biostratigraphic evidence, which suggests an age for the hiatus between 7.7 and 11.8 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established (through, for example the Canadian ADAPT program) have been identified. These sites have been proposed to WMO Polar Space Task Group as focus areas for future monitoring by satellite data. Seven monitoring transects spanning different permafrost types have been proposed in addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Since 2007, there has been an ongoing collaboration between Duke University and Mulago National Referral Hospital (NRH) in Kampala, Uganda to increase surgical capacity. This program is prepared to expand to other sites within Uganda to improve neurosurgery outside of Kampala as well. This study assessed the existing progress at Mulago NRH and the neurosurgical needs and assets at two potential sites for expansion. Methods: Three public hospitals were visited to assess needs and assets: Mulago NRH, Mbarara Regional Referral Hospital (RRH), and Gulu RRH. At each site, a surgical capacity tool was administered and healthcare workers were interviewed about perceived needs and assets. A total of 39 interviews were conducted between the three sites. Thematic analysis of the interviews was conducted to identify the reported needs and assets at each hospital. Results: Some improvements are needed to the Duke-Mulago Collaboration model prior to expansion; minor changes to the neurosurgery residency program as well as the method for supply donation and training provided during neurosurgery camps need to examined. Neurosurgery can be implemented at Mbarara RRH currently but the hospital needs a biomedical equipment technician on staff immediately. Gulu RRH is not well positioned for Neurosurgery until there is a CT Scanner somewhere in the Northern Region of Uganda or at the hospital. Conclusions: Neurosurgery is already present in Uganda on a small scale and needs rapid expansion to meet patient needs. This progression is possible with prudent allocation of resources on strategic equipment purchases, human resources including clinical staff and biomedical staff, and changes to the supply chain management system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of studies have shown that methanogens are active in the presence of sulfate under some conditions. This phenomenon is especially exemplified in carbonate sediments of the southern Australian continental margin. Three sites cored during Ocean Drilling Program (ODP) Leg 182 in the Great Australian Bight have high concentrations of microbially-generated methane and hydrogen sulfide throughout almost 500 m of sediments. In these cores, the sulfate-reducing and methanogenic zones overlap completely; that is, the usual sulfate-methane transition zone is absent. Amino acid racemization data show that the gassy sediments consist of younger carbonates than the low-gas sites. High concentrations of the reduced gases also occur in two ODP sites on the margin of the Bahamas platform, both of which have similar sedimentary conditions to those of the high-gas sites of Leg 182. Co-generation of these reduced gases results from an unusual combination of conditions, including: (1) a thick Quaternary sequence of iron-poor carbonate sediments, (2) a sub-seafloor brine, and (3) moderate amounts of organic carbon. The probable explanation for the co-generation of hydrogen sulfide and methane in all these sites, as well as in other reported environments, is that methanogens are utilizing non-competitive substrates to produce methane within the sulfate-reducing zone. Taken together, these results form the basis of a new model for sulfate reduction and methanogenesis in marine sediments. The biogeochemical end-members of the model are: (1) minimal sulfate reduction, (2) complete sulfate reduction followed by methanogenesis, and (3) overlapping sulfate reduction and methanogenesis with no transition zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate age models are a tool of utmost important in paleoclimatology. Constraining the rate and pace of past climate change are at the core of paleoclimate research, as such knowledge is crucial to our understanding of the climate system. Indeed, it allows for the disentanglement of the various drivers of climate change. The scarcity of highly resolved sedimentary records from the middle Eocene (Bartonian - Lutetian Stages; 47.8 - 37.8 Ma) has led to the existence of the "Eocene astronomical time scale gap" and hindered the establishment of a comprehensive astronomical time scale (ATS) for the entire Cenozoic. Sediments from the Newfoundland Ridge drilled during Integrated Ocean Drilling Program (IODP) Expedition 342 span the Eocene gap at an unprecedented stratigraphic resolution with carbonate bearing sediments. Moreover, these sediments exhibit cyclic lithological changes that allow for an astronomical calibration of geologic time. In this study, we use the dominant obliquity imprint in XRF-derived calcium-iron ratio series (Ca/Fe) from three sites drilled during IODP Expedition 342 (U1408, U1409, U1410) to construct a floating astrochronology. We then anchor this chronology to numerical geological time by tuning 173-kyr cycles in the amplitude modulation pattern of obliquity to an astronomical solution. This study is one of the first to use the 173-kyr obliquity amplitude cycle for astrochronologic purposes, as previous studies primarily use the 405-kyr long eccentricity cycle as a tuning target to calibrate the Paleogene geologic time scale. We demonstrate that the 173-kyr cycles in obliquity's amplitude are stable between 40 and 50 Ma, which means that one can use the 173-kyr cycle for astrochronologic calibration in the Eocene. Our tuning provides new age estimates for magnetochron reversals C18n.1n - C21r and a stratigraphic framework for key sites from Expedition 342 for the Eocene. Some disagreements emerge when we compare our tuning for the interval between C19r and C20r with previous tuning attempts from the South Atlantic. We therefore present a revision of the original astronomical interpretations for the latter records, so that the various astrochronologic age models for the middle Eocene in the North- and South-Atlantic are consistent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 165 of the Ocean Drilling Program afforded a unique opportunity to investigate organic and inorganic geochemistry across a wide gradient of sediment compositions and corresponding chemical pathways. The solid fractions at Sites 998, 999, 1000, and 1001 reveal varying proportions of reactive carbonate species, a labile volcanic ash fraction occurring in discrete layers and as a dispersed component, and detrital fluxes that derive from continental weathering. The relative proportions and reactivities of these end-members strongly dictate the character of the diagenetic profiles observed during the pore-water work of Leg 165. In addition, alteration of the well-characterized basaltic basement at Site 1001 has provided a strong signal that is reflected in many of the dissolved components. The relative effects of basement alteration and diagenesis within the sediment column are discussed in terms of downcore relationships for dissolved calcium and magnesium. With the exception of Site 1002 in the Cariaco Basin, the sediments encountered during Leg 165 were uniformly deficient in organic carbon (typically <0.1 wt%). Consequently, rates of organic oxidation were generally low and dominated by suboxic pathways with subordinate levels of bacterial sulfate reduction and methanogenesis. The low rates of organic remineralization are supported by modeled rates of sulfate reduction. Site 1000 provided an exception to the generally low levels of microbially mediated redox cycling. At this site the sediment is slightly more enriched in organic phases, and externally derived thermogenic hydrocarbons appear to aid in driving enhanced levels of redox diagenesis at great depths below the seafloor. The entrapment of these volatiles corresponds with a permeability seal defined by a pronounced Miocene minimum in calcium carbonate concentration recognized throughout the basin and with a dramatic downcore increase in the magnitude of limestone lithification. The latter has been tentatively linked to increases in alkalinity associated with microbial oxidation of organic matter and gaseous hydrocarbons. Recognition and quantification of previously unconstrained large volumes and frequencies of Eocene and Miocene silicic volcanic ash within the Caribbean Basin is one of the major findings of Leg 165. High frequencies of volcanic ash layers manifest as varied but often dominant controls on pore-water chemistry. Sulfur isotope results are presented that speak to secondary metal and sulfur enrichments observed in ash layers sampled during Leg 165. Ultimately, a better mechanistic understanding of these processes and the extent to which they have varied spatially and temporally may bear on the global mass balances for a range of major and minor dissolved components of seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.