994 resultados para PROTEIN MICROARRAY
Resumo:
Introduction: CD22 is expressed on most B-non-Hodgkin lymphomas (NHL); inotuzumab ozogamicin (INO) is an anti-CD22 antibody conjugated to calicheamicin. This study evaluated the safety and tolerability of INO plus R-CVP in patients (pts) with relapsed/refractory CD22+ B-NHL. Efficacy data were also collected. Methods: Part 1 of this open-label study identified a maximum tolerated dose (MTD) of INO 0.8mg/m,2 on day 2 plus R-CVP (rituximab 375mg/m,2 cyclophosphamide 750mg/m,2 and vincristine 1.4mg/m,2 on day 1; prednisone 40mg/m,2 on days 1-5) every 21 days. Subsequently, pts were enrolled in the MTD confirmation cohort (part 2, n = 10), which required a dose-limiting toxicity rate of <33% in cycle 1 and <4 pts discontinuing prior to cycle 3 due to an adverse event (AE) in the MTD expansion cohort (part 3, n = 22), which explored preliminary activity. Results: Parts 2 and 3 enrolled 32 pts: 16 pts with diffuse large B-cell lymphoma, 15 with follicular lymphoma and one with mantle cell lymphoma. Median age was 64.5 years (range 44-81 years); 34% of pts had 1 prior regimen, 34% had 2, 28% had ≥3 and 3% had none (median 2; range 0-6).Median treatment duration was five cycles (range 1-6). Part 2 confirmed the MTD as standard dose R-CVP plus INO 0.8mg/m,2; 2/10 pts had a dose-limiting toxicity (grade 3 increased ALT/AST, grade 4 neutropenia requiring G-CSF). One pt discontinued because of an AE prior to cycle 3. Common treatment-related AEs were thrombocytopenia (78%), neutropenia (66%), fatigue (50%), leukopenia (50%), nausea (41%) and lymphopenia (38%); common grade 3/4 AEs were neutropenia (63%), thrombocytopenia (53%), leukopenia (38%) and lymphopenia (31%). There was one case of treatment-related fatal pneumonia with grade 4 neutropenia. Ten pts discontinued treatment due to AEs; thrombocytopenia/delayed platelet recovery was the leading cause (grade 1/2, n = 6; grade 3/4, n = 3). Objective response rate (ORR) was 77% (n = 24/31 evaluable pts), including 26% (n=8/31) with complete response (CR); three pts had stable disease. Of the pts with follicular lymphoma, ORR was 100% (n = 15/15), including seven pts with CR. Of the pts with diffuse large B-cell lymphoma, ORR was 60% (n = 9/16), including one pt with CR. Conclusions: Results suggest that INOplus R-CVP has acceptable toxicity and promising activity in relapsed/refractory CD22+ B-NHL. The most common grade 3/4 AEs were hematologic. Follow-up for progression-free and overall survival is ongoing.
Resumo:
Two allelic genomic fragments containing ribosomal protein S4 encoding genes (rpS4) from Trypanosoma cruzi (CL-Brener strain) were isolated and characterized. One allele comprises two complete tandem repeats of a sequence encoding an rpS4 gene. In the other, only one rpS4 gene is found. Sequence comparison to the accessed data in the genome project database reveals that our two-copy allele corresponds to a variant haplotype. However, the deduced aminoacid sequence of all the gene copies is identical. The rpS4 transcripts processing sites were determined by comparison of genomic sequences with published cDNA data. The obtained sequence data demonstrates that rpS4 genes are expressed in epimastigotes, amastigotes, and trypomastigotes. A recombinant version of rpS4 was found to be an antigenic: it was recognized by 62.5% of the individuals with positive serology for T. cruzi and by 93.3% of patients with proven chronic chagasic disease.
Resumo:
The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Resumo:
Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.
Resumo:
To infer recent patterns of malaria transmission, we measured naturally acquired IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein (MSP)-1 of both Plasmodium vivax (PvMSP-1(19)) and Plasmodium falciparum (PfMSP-1(19)) in remote malaria-exposed populations of the Amazon Basin. Community-based cross-sectional surveys were carried out between 2002 and 2003 in subjects of all age groups living along the margins of the Unini and Jaú rivers, Northwestern Brazil. We found high prevalence rates of IgG antibodies to PvMSP-1(19) (64.0 - 69.6%) and PfMSP-1(19) (51.6 - 52.0%), with significant differences in the proportion of subjects with antibodies to PvMSP-1(19) according to age, place of residence and habitual involvement in high-risk activities, defining some groups of highly exposed people who might be preferential targets of malaria control measures. In contrast, no risk factor other than age was significantly associated with seropositivity to PfMSP-1(19). Only 14.1% and 19.3% of the subjects tested for antibodies to PvMSP-1(19) and PfMSP-1(19) in consecutive surveys (142 - 203 days apart) seroconverted or had a three fold or higher increase in the levels of antibodies to these antigens. We discuss the extent to which serological data correlated with the classical malariometric indices and morbidity indicators measured in the studied population at the time of the seroprevalence surveys and highlight some limitations of serological data for epidemiological inference.
Resumo:
Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
In addition to numerous immune factors, C-reactive protein (CRP) and nitric oxide (NO) are believed to be molecules of malaria immunopathology. The objective of this study was to detect CRP and NO inductions by agglutination latex test and Griess microassay respectively in both control and malaria groups from endemic areas of Iran, including Southeastern (SE) (Sistan & Balouchestan, Hormozgan, Kerman) and Northwestern (NW) provinces (Ardabil). The results indicated that CRP and NO are produced in all malaria endemic areas of Iran. In addition, more CRP and NO positive cases were observed amongst malaria patients in comparison with those in control group. A variable co-association of CRP/NO production were detected between control and malaria groups, which depended upon the malaria endemic areas and the type of plasmodia infection. The percentage of CRP/NO positive cases was observed to be lower in NW compare to SE region, which may be due to the different type of plasmodium in the NW (Plasmodium vivax) with SE area (P. vivax, Plasmodium falciparum, mixed infection). The fluctuations in CRP/NO induction may be consistent with genetic background of patients. Although, CRP/NO may play important role in malaria, their actual function and interaction in clinical forms of disease remains unclear.
Resumo:
Rhodnius prolixus is the main Trypanosoma rangeli vector in several Latin-American countries and is susceptible to infection with KP1(+) strains; however, it presents an invasion-resistant response to KP1(-) strains. The present work has identified a trypanolytic protein against T. rangeli KP1(-) in the R. prolixus hemolymph which was fractioned with ammonium sulfate (following dialysis). The results revealed a protein component which did not depend on divalent cations for its biological function whilst keeping its trypanolytic activity at temperatures ranging from -20ºC to 37ºC, at 7.0 to 10.5 pH. The protein was partially purified by gel filtration chromatography and ionic exchange chromatography. The major component presented a molecular weight of around 79 kDa and an isoelectric point between 4.9 and 6.3 and may be directly related to hemolymph trypanolytic activity against T. rangeli KP1(-) populations.
Resumo:
Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION: Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.