949 resultados para POLY(ACRYLIC ACID)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of HCl on authigenic chlorite in three different sandstones has been examined uisng an Environmental Scanning Electron Microscope (ESEM), together with conventional analytical techniques. The ESEM enabled chlorites to be directly observed in situ at high magnifications during HCl treatment, and was particularly effective in allowing the same chlorite areas to be closely compared before and after acid treatment. Chlorites were reacted with 1M to 10M HCl at temperatures up to 80°C and for periods up to five months. After all treatments, chlorites show extensive leaching of iron, magnesium and aluminum, and their crystalline structure is destroyed. However, despite these major compositional and structural changes, chlorites show little or no visible evidence of acid attack, with precise morphological detail of individual plates preserved in all samples following acid treatments. Chlorite dissolution, sensu stricto, did not occur as a result of acidization of the host sandstones. Acid-treated chlorides are likely to exits in a structurally weakened state that may make them susceptible to physical disintegration during fluid flow. Accordingly, fines migration may be a significant engineering problem associated with the acidization of chlorite-bearing sandstones. © 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourteen new complexes of the form cis-\[RuIIX2(R2qpy2+)2]4+ (R2qpy2+ = a 4,4′:2′,2″:4″,4‴-quaterpyridinium ligand, X = Cl− or NCS−) have been prepared and isolated as their PF6− salts. Characterisation involved various techniques including 1H NMR spectroscopy and +electrospray or MALDI mass spectrometry. The UV–Vis spectra display intense intraligand π → π∗ absorptions, and also metal-to-ligand charge-transfer (MLCT) bands with two resolved maxima in the visible region. Red-shifts in the MLCT bands occur as the electron-withdrawing strength of the pyridinium groups increases, while replacing Cl− with NCS− causes blue-shifts. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and several ligand-based reductions that are irreversible. The variations in the redox potentials correlate with changes in the MLCT energies. A single-crystal X-ray structure has been obtained for a protonated form of a proligand salt, \[(4-(CO2H)Ph)2qpyH3+]\[HSO4]3·3H2O. Time-dependent density functional theory calculations give adequate correlations with the experimental UV–Vis spectra for the two carboxylic acid-functionalised complexes in DMSO. Despite their attractive electronic absorption spectra, these dyes are relatively inefficient photosensitisers on electrodes coated with TiO2 or ZnO. These observations are attributed primarily to weak electronic coupling with the surfaces, since the DFT-derived LUMOs include no electron density near the carboxylic acid anchors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and chemical properties of biofuel are influenced by structural features of fatty acid such as chain length, degree of unsaturation and branching of the chain. A simple and reliable calculation method to estimate fuel property is therefore needed to avoid experimental testing which is difficult, costly and time consuming. Typically in commercial biodiesel production such testing is done for every batch of fuel produced. In this study 9 different algae species were selected that were likely to be suitable for subtropical climates. The fatty acid methyl esters (FAMEs) of all algae species were analysed and the fuel properties like cetane number (CN), cold filter plugging point (CFPP), kinematic viscosity (KV), density and higher heating value (HHV) were determined. The relation of each fatty acid with particular fuel property is analysed using multivariate and multi-criteria decision method (MCDM) software. They showed that some fatty acids have major influences on the fuel properties whereas others have minimal influence. Based on the fuel properties and amounts of lipid content rank order is drawn by PROMETHEE-GAIA which helped to select the best algae species for biodiesel production in subtropical climates. Three species had fatty acid profiles that gave the best fuel properties although only one of these (Nannochloropsis oculata) is considered the best choice because of its higher lipid content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S-·H2O, (I), the 5-SSA- monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-set R44(20). The first involves both carboxylic acid O-HOwater and water O-HOsulfonate hydrogen bonds at one end, and ammonium N-HOsulfonate and N-HOcarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O-HOsulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three-dimensional framework structure through N-HO and water O-HO hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2-·C7H5O6S-, (II), is unusual, having both dianionic 5-SSA2- and monoanionic 5-SSA- species. These are linked by a carboxylic acid O-HO hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation-anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N-HO hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA- monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2- species of which there are only a few examples in the crystallographic literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite TiO2/acid leached serpentine tailings (AST) were synthesized through the hydrolysis–deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energydispersive X-ray spectrometry (EDS), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and surface area measurement (BET). The XRD analysis showed that TiO2 coated on the surface of acid leached serpentine tailings was mixed crystal phases of rutile and anatase, the grain size of which is 10–30 nm. SEM, TEM, and EDS analysis exhibited that nano-TiO2 particles were deposited on the surface and internal cavities of acid leaching serpentine tailings. The XPS and FT-IR analysis demonstrated that the coating process of TiO2 on AST was a physical adsorption process. The large specific surface area, porous structure, and plentiful surface hydroxyl group of TiO2/AST composite resulted in the high adsorption capacity of Cr(VI). The experimental results demonstrated that initial concentration of Cr(VI), the amount of the catalyst, and pH greatly influenced the removal efficiency of Cr(VI). The removal kinetics of Cr(VI) at a relative low initial concentration was fitted well with Langmuir–Hinshelwood kinetics model with R2 value of about unity. The asprepared composites exhibited strong adsorption and photocatalytic capacity for the removal of Cr(VI), and the possible photocatalytic reduction mechanism was studied. The photodecomposition of Cr(VI) was as high as 95% within 2 h, and the reusability of the photocatalysis was proven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there is a lack of choice when selecting synthetic materials with the cell-instructive properties demanded by modern biomaterials. The purpose of this study was to investigate the attachment of cells onto hydrogels prepared from poly(2-oxazoline)s selectively-functionalized with cell adhesion motifs. A water-soluble macromer based on the microwave-assisted cationic ring-opening polymerization of 2-methyl-2-oxazoline and 2-(dec-9-enyl)-2-oxazoline was functionalized with the peptide CRGDSG or controls using thiol-ene photochemistry followed by facile crosslinking in the presence of a dithiol crosslinker. The growth of human fibroblasts on the hydrogel surfaces was dictated by the structure and amount of incorporated peptide. Controls without any peptide showed resistance to cellular attachment. The benignity of the crosslinking conditions was demonstrated by the incorporation of fibroblasts within the hydrogels to produce three-dimensional cell-polymer constructs.