929 resultados para Optical processor
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
Fluoroindate glasses containing 1, 2, 3, and 4 mol% ErF3 were prepared in a dry box under an argon atmosphere. Absorption spectra of these glasses at room temperature were obtained. The Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) for f-f transitions of Er3+ ions as well as transition probabilities, branching ratios, radiative lifetimes, and peak cross-sections for stimulated emission of each band were determined. The concentration effect on the intensities is analyzed. The optical properties of the fluoroindate glasses doped with Er3+ ions are compared with those of other glasses described in the literature. © 1995.
Resumo:
Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.
Resumo:
This work reports on the optical properties of Cr3+ ions in the pseudoternary system InF3-GdF3-GaF3. Linear properties, investigated through absorption and emission spectra, provide information on the crystal field, the frequency, and number of phonons emitted during the absorption to the 4T2 band and the emission to the 4A2 ground state, and the Fano antiresonance line shape in the vicinity of the 4A2→2E transition. A study of the nonlinear refractive index as a function of the wavelength, carried out with the Z-scan technique, provides spectroscopic data about electronic transitions starting from the excited state.
Resumo:
Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.
Resumo:
Optical absorption, Stokes, and anti-Stokes photoluminescence were performed on Er3+-Yb3+ co-doped fluoroindate glasses. For compounds prepared with a fixed 2 mol % ErF3 concentration and YbF3 contents ranging from 0 to 8 mol %, important upconversion processes were observed as a function of temperature and photon excitation energy. Based on the experimental data, two mechanisms for the upconversion (or anti-Stokes photoluminescence) processes were identified and analyzed in detail. At high Yb contents, the upconversion mechanisms are mostly determined by the population of the 2F5/2 levels of Yb3+ ions (or 4I11/2 levels of Er3+ ions, by energy transfer) regardless of the photon excitation energy and temperature of measurement. Moreover, green and red light emission have similar intensities when a large Yb3+ content is present. © 1998 American Institute of Physics.
Resumo:
Magneto-optical rotation was measured at room temperature for glasses containing Bi2O3-CdO-GeO2 (BCG), and Bi2O3-PbO-GeO2-B2O3 (BPGP). A pulsed magnetic field between 50 and 80 KG was used to measure Faraday rotation at 632.8 nm as a function of the concentration of Bi and Cd for BCG and Bi and Pb for BPGB. Verdet constant as high as 0.162 min G-1 cm-1 at 632.8 nm for the BPGB sample with the highest concentrations of Bi and Cd was found. Verdet constant increases linearly with the heavy-metal concentration for the BPGB whereas it reaches some saturation for the BCG system. Measurements of the magneto-optical rotation at other wavelengths in the visible and the refractive index at 632.8 nm are also reported. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In this work we analyze the relation between the interface microroughness and the full width at half maximum (FWHM) of the photoluminescence (PL) spectra for a GaAs/Ga0.7Al0.3As multiple quantum well (QW) system. We show that, in spite of the complex correlation between the microscopic interface-defects parameters and the QW optical properties, the Singh and Bajaj model [Appl. Phys. Lett. 44, 805 (1984)] provides a good quantitative description of the excitonic PL-FWHM. ©1999 The American Physical Society.
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
This paper describes a speech enhancement system (SES) based on a TMS320C31 digital signal processor (DSP) for real-time application. The SES algorithm is based on a modified spectral subtraction method and a new speech activity detector (SAD) is used. The system presents a medium computational load and a sampling rate up to 18 kHz can be used. The goal is load and a sampling rate up to 18 kHz can be used. The goal is to use it to reduce noise in an analog telephone line.
Resumo:
Strontium bismuth tantalate thin films were prepared on several substrates (platinized silicon (Pt/Ti/SiO 2 /Si), n -type (100)-oriented and p -type (111)-oriented silicon wafers, and fused silica) by the solution deposition method. The resin was obtained by the polymeric precursor method, based on the Pechini process, using strontium carbonate, bismuth oxide, and tantalum ethoxide as starting reagents. Characterizations by XRD and SEM were performed for structural and microstructural evaluations. The electrical measurements, carried on the MFM configuration, showed P r values of 6.24 μC/cm 2 and 31.5 kV/cm for the film annealed at 800 C. The film deposited onto fused silica and treated at 700 C presented around 80% of transmittance. © 2002 Taylor & Francis.
Resumo:
The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.