982 resultados para Operating cost


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Many African countries are rapidly expanding HIV/AIDS treatment programs. Empirical information on the cost of delivering antiretroviral therapy (ART) for HIV/AIDS is needed for program planning and budgeting. Methods: We searched published and gray sources for estimates of the cost of providing ART in service delivery (non-research) settings in sub-Saharan Africa. Estimates were included if they were based on primary local data for input prices. Results: 17 eligible cost estimates were found. Of these, 10 were from South Africa. The cost per patient per year ranged from $396 to $2,761. It averaged approximately $850/patient/year in countries outside South Africa and $1,700/patient/year in South Africa. The most recent estimates for South Africa averaged $1,200/patient/year. Specific cost items included in the average cost per patient per year varied, making comparison across studies problematic. All estimates included the cost of antiretroviral drugs and laboratory tests, but many excluded the cost of inpatient care, treatment of opportunistic infections, and/or clinic infrastructure. Antiretroviral drugs comprised an average of one third of the cost of treatment in South Africa and one half to three quarters of the cost in other countries. Conclusions: There is very little empirical information available about the cost of providing antiretroviral therapy in non-research settings in Africa. Methods for estimating costs are inconsistent, and many estimates combine data drawn from disparate sources. Cost analysis should become a routine part of operational research on the treatment rollout in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current low-level networking abstractions on modern operating systems are commonly implemented in the kernel to provide sufficient performance for general purpose applications. However, it is desirable for high performance applications to have more control over the networking subsystem to support optimizations for their specific needs. One approach is to allow networking services to be implemented at user-level. Unfortunately, this typically incurs costs due to scheduling overheads and unnecessary data copying via the kernel. In this paper, we describe a method to implement efficient application-specific network service extensions at user-level, that removes the cost of scheduling and provides protected access to lower-level system abstractions. We present a networking implementation that, with minor modifications to the Linux kernel, passes data between "sandboxed" extensions and the Ethernet device without copying or processing in the kernel. Using this mechanism, we put a customizable networking stack into a user-level sandbox and show how it can be used to efficiently process and forward data via proxies, or intermediate hosts, in the communication path of high performance data streams. Unlike other user-level networking implementations, our method makes no special hardware requirements to avoid unnecessary data copies. Results show that we achieve a substantial increase in throughput over comparable user-space methods using our networking stack implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines how and why web server performance changes as the workload at the server varies. We measure the performance of a PC acting as a standalone web server, running Apache on top of Linux. We use two important tools to understand what aspects of software architecture and implementation determine performance at the server. The first is a tool that we developed, called WebMonitor, which measures activity and resource consumption, both in the operating system and in the web server. The second is the kernel profiling facility distributed as part of Linux. We vary the workload at the server along two important dimensions: the number of clients concurrently accessing the server, and the size of the documents stored on the server. Our results quantify and show how more clients and larger files stress the web server and operating system in different and surprising ways. Our results also show the importance of fixed costs (i.e., opening and closing TCP connections, and updating the server log) in determining web server performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of unicast routing is to find a path from a source to a destination. Conventional routing has been used mainly to provide connectivity. It lacks the ability to provide any kind of service guarantees and smart usage of network resources. Improving performance is possible by being aware of both traffic characteristics and current available resources. This paper surveys a range of routing solutions, which can be categorized depending on the degree of the awareness of the algorithm: (1) QoS/Constraint-based routing solutions are aware of traffic requirements of individual connection requests; (2) Traffic-aware routing solutions assume knowledge of the location of communicating ingress-egress pairs and possibly the traffic demands among them; (3) Routing solutions that are both QoS-aware as (1) and traffic-aware as (2); (4) Best-effort solutions are oblivious to both traffic and QoS requirements, but are adaptive only to current resource availability. The best performance can be achieved by having all possible knowledge so that while finding a path for an individual flow, one can make a smart choice among feasible paths to increase the chances of supporting future requests. However, this usually comes at the cost of increased complexity and decreased scalability. In this paper, we discuss such cost-performance tradeoffs by surveying proposed heuristic solutions and hybrid approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the Internet has evolved and grown, an increasing number of nodes (hosts or autonomous systems) have become multihomed, i.e., a node is connected to more than one network. Mobility can be viewed as a special case of multihoming—as a node moves, it unsubscribes from one network and subscribes to another, which is akin to one interface becoming inactive and another active. The current Internet architecture has been facing significant challenges in effectively dealing with multihoming (and consequently mobility). The Recursive INternet Architecture (RINA) [1] was recently proposed as a clean-slate solution to the current problems of the Internet. In this paper, we perform an average-case cost analysis to compare the multihoming / mobility support of RINA, against that of other approaches such as LISP and MobileIP. We also validate our analysis using trace-driven simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avalanche Photodiodes (APDs) have been used in a wide range of low light sensing applications such as DNA sequencing, quantum key distribution, LIDAR and medical imaging. To operate the APDs, control circuits are required to achieve the desired performance characteristics. This thesis presents the work on development of three control circuits including a bias circuit, an active quench and reset circuit and a gain control circuit all of which are used for control and performance enhancement of the APDs. The bias circuit designed is used to bias planar APDs for operation in both linear and Geiger modes. The circuit is based on a dual charge pumps configuration and operates from a 5 V supply. It is capable of providing milliamp load currents for shallow-junction planar APDs that operate up to 40 V. With novel voltage regulators, the bias voltage provided by the circuit can be accurately controlled and easily adjusted by the end user. The circuit is highly integrable and provides an attractive solution for applications requiring a compact integrated APD device. The active quench and reset circuit is designed for APDs that operate in Geiger-mode and are required for photon counting. The circuit enables linear changes in the hold-off time of the Geiger-mode APD (GM-APD) from several nanoseconds to microseconds with a stable setting step of 6.5 ns. This facilitates setting the optimal `afterpulse-free' hold-off time for any GM-APD via user-controlled digital inputs. In addition this circuit doesn’t require an additional monostable or pulse generator to reset the detector, thus simplifying the circuit. Compared to existing solutions, this circuit provides more accurate and simpler control of the hold-off time while maintaining a comparable maximum count-rate of 35.2 Mcounts/s. The third circuit designed is a gain control circuit. This circuit is based on the idea of using two matched APDs to set and stabilize the gain. The circuit can provide high bias voltage for operating the planar APD, precisely set the APD’s gain (with the errors of less than 3%) and compensate for the changes in the temperature to maintain a more stable gain. The circuit operates without the need for external temperature sensing and control electronics thus lowering the system cost and complexity. It also provides a simpler and more compact solution compared to previous designs. The three circuits designed in this project were developed independently of each other and are used for improving different performance characteristics of the APD. Further research on the combination of the three circuits will produce a more compact APD-based solution for a wide range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of energy detector systems is a well studied topic in the literature: numerous models have been derived describing the behaviour of single and multiple antenna architectures operating in a variety of radio environments. However, in many cases of interest, these models are not in a closed form and so their evaluation requires the use of numerical methods. In general, these are computationally expensive, which can cause difficulties in certain scenarios, such as in the optimisation of device parameters on low cost hardware. The problem becomes acute in situations where the signal to noise ratio is small and reliable detection is to be ensured or where the number of samples of the received signal is large. Furthermore, due to the analytic complexity of the models, further insight into the behaviour of various system parameters of interest is not readily apparent. In this thesis, an approximation based approach is taken towards the analysis of such systems. By focusing on the situations where exact analyses become complicated, and making a small number of astute simplifications to the underlying mathematical models, it is possible to derive novel, accurate and compact descriptions of system behaviour. Approximations are derived for the analysis of energy detectors with single and multiple antennae operating on additive white Gaussian noise (AWGN) and independent and identically distributed Rayleigh, Nakagami-m and Rice channels; in the multiple antenna case, approximations are derived for systems with maximal ratio combiner (MRC), equal gain combiner (EGC) and square law combiner (SLC) diversity. In each case, error bounds are derived describing the maximum error resulting from the use of the approximations. In addition, it is demonstrated that the derived approximations require fewer computations of simple functions than any of the exact models available in the literature. Consequently, the regions of applicability of the approximations directly complement the regions of applicability of the available exact models. Further novel approximations for other system parameters of interest, such as sample complexity, minimum detectable signal to noise ratio and diversity gain, are also derived. In the course of the analysis, a novel theorem describing the convergence of the chi square, noncentral chi square and gamma distributions towards the normal distribution is derived. The theorem describes a tight upper bound on the error resulting from the application of the central limit theorem to random variables of the aforementioned distributions and gives a much better description of the resulting error than existing Berry-Esseen type bounds. A second novel theorem, providing an upper bound on the maximum error resulting from the use of the central limit theorem to approximate the noncentral chi square distribution where the noncentrality parameter is a multiple of the number of degrees of freedom, is also derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the optimisation of Coarse-Fine (CF) spectrum sensing architectures under a distribution of SNRs for Dynamic Spectrum Access (DSA). Three different detector architectures are investigated: the Coarse-Sorting Fine Detector (CSFD), the Coarse-Deciding Fine Detector (CDFD) and the Hybrid Coarse-Fine Detector (HCFD). To date, the majority of the work on coarse-fine spectrum sensing for cognitive radio has focused on a single value for the SNR. This approach overlooks the key advantage that CF sensing has to offer, namely that high powered signals can be easily detected without extra signal processing. By considering a range of SNR values, the detector can be optimised more effectively and greater performance gains realised. This work considers the optimisation of CF spectrum sensing schemes where the security and performance are treated separately. Instead of optimising system performance at a single, constant, low SNR value, the system instead is optimised for the average operating conditions. The security is still provided such that at the low SNR values the safety specifications are met. By decoupling the security and performance, the system’s average performance increases whilst maintaining the protection of licensed users from harmful interference. The different architectures considered in this thesis are investigated in theory, simulation and physical implementation to provide a complete overview of the performance of each system. This thesis provides a method for estimating SNR distributions which is quick, accurate and relatively low cost. The CSFD is modelled and the characteristic equations are found for the CDFD scheme. The HCFD is introduced and optimisation schemes for all three architectures are proposed. Finally, using the Implementing Radio In Software (IRIS) test-bed to confirm simulation results, CF spectrum sensing is shown to be significantly quicker than naive methods, whilst still meeting the required interference probability rates and not requiring substantial receiver complexity increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation applies a variety of quantitative methods to electricity and carbon market data, utility company accounts data, capital and operating costs to analyse some of the challenges associated with investment in energy assets. In particular, three distinct research topics are analysed within this general theme: the efficiency of interconnector trading, the optimal sizing of intermittent wind facilities and the impact of carbon pricing on the cost of capital for investors are researched in successive sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.