944 resultados para OPTICAL CRYSTAL
Resumo:
Certain binary codes having good autocorrelation properties akin to Barker codes are studied.
Resumo:
C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.
Resumo:
Meclofenamic acid, C I4HIICI2NO2, probably the most potent among analgesic fenamates, crystallizes in the triclinic space group P1, with a = 8.569 (5), b = 8.954(8), c -- 9.371 (4) A, ct = 103.0 (2), fl -- 103.5 (2), y = 92.4 (2) ° , Z = 2, D m = 1.43 (4), D c = 1.41 Mg m -3. The structure was solved by direct methods and refined to R = 0.135 for 1062 observed reflections. The anthranilic acid moiety in the molecule is nearly planar and is nearly perpendicular to the 2,6-dichloro-3-methylphenyl group. The molecules, which exist as hydrogen-bonded dimers, have an internal hydrogen bond involving the imino and the carboxyl groups. The methyl group is disordered and occupies two positions with unequal occupancies. The disorder can be satisfactorily explained in terms of the rotational isomerism of the 2,6-dichloro-3-methylphenyl group about the bond which connects it to the anthranilic acid moiety and the observed occupancies on the basis of packing considerations.
Resumo:
The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.
Resumo:
Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics
Resumo:
(I): M r = 258.34, triclinic, Pi, a = 9.810 (3), b=9.635(3), e=15.015(4)A, a=79.11(2), #= 102.38 (3), y = 107.76 (3) o, V= 1308.5 A 3, Z = 4, Din= 1.318 (3) (by flotation in KI solution), D x = 1.311 g cm -3, Cu Ka, 2 = 1.5418/~, g = 20-05 cm -1, F(000) = 544, T---- 293 K, R = 0.074 for 2663 reflections. (II): M r = 284.43, monoclinic, P2~/c, a= 17.029 (5), b=6.706 (5), c= 14.629 (4), t= 113.55 (2) ° , V=1531.4A 3, Z=4, Dm=1.230(5) (by flotation in KI solution), Dx= 1.234gem -3, Mo Ka, 2 = 0.7107 A, g = 1.63 cm-1; F(000) = 608, T= 293 K, R = 0.062 for 855 reflections. The orientation of the C=S chromophores in the crystal lattice and their reactivity in the crystalline state are discussed. The C--S bonds are much shorter than the normal bond length [1.605 (4) (I), 1.665 (8) A (II) cf. 1.71 A].
Resumo:
CaH406P-.K +, M r = 206.10, is orthorhombic, space group Pbca (from systematic absences), a = 14.538(4), b = 13.364(5), c = 6.880 (6)A, U = 1383.9 A 3, D x = 2.07 Mg m -a, Z = 8, ~.(Mo Ka) = 0.7107/~, p(MO Ka) = 1.015 mm -1. The final R value is 0.042 for a total of 1397 reflections. The high energy P-O(13) and the enolic C(1)-O(13) bonds are 1.612 and 1.374 A respectively. The enolpyruvate moiety is essentially planar. The orientation of the phosphate with respect to the pyruvate group in PEP.K is distinctly different from that in the PEP-cyclohexylammonium salt, the torsion angle C (2)-C (1)-O(13)- P being -209.1 in the former and -90 ° in the latter. The K + ion binds simultaneously to both the phosphate and carboxyl ends of the same PEP molecule. The ester O(13) is also a binding site for the cation. The K + ion is coplanar with the pyruvate moiety and binds to 0(22) and O(13) almost along their lone-pair directions. The carbonyl 0(22) prefers to bind to the K + ion rather than take part in the formation of hydrogen bonds usually observed in carboxylic acid structures.
Resumo:
L-Lysine d-pantothenate, a 1:1 amino acid-vitamin complex, crystallizes in the monoclinic space group P21 with Image Full-size image (1K) .The structure has been solved by direct methods and refined to an R value of 0.053 for 1868 observed reflections. The zwitterionic positively charged lysine molecules in the structure assume the sterically most favourable conformation with an all-trans side chain trans to the α-carboxylate group. The pantothenate anion has a somewhat folded conformation stabilised by an intramolecular bifurcated hydrogen bond. The unlike molecules aggregate into separate alternating layers. The molecules in the lysine layers form a head-to-tail sequence parallel to the a-axis. The interactions which hold the adjacent layers together include those between the side chain amino group of lysine and the carboxylate group in the pantothenate anion. The geometry of these interactions is such that each carboxylate group is sandwiched between two amino groups in a periodic arrangement of alternating carboxylate and amino groups.
Resumo:
The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.
Resumo:
A method that yields optical Barker codes of smallest known lengths for given discrimination is described.
Resumo:
allo-4-Hydroxy-L-proline crystallizes from an aqueous solution as the dihydrate. The crystals are orthorhombic, space group P212121, with a=7.08 (2), b=22.13 (3), c= 5"20 (2) A,. The structure was solved by direct methods and refined by block-diagonal least squares. The final R for 733 observed reflexions is 0.054. The molecule exists as a zwitterion with hydroxyl and carboxyl groups cis to the pyrrolidine ring. The latter is puckered at the fl-carbon atom, which deviates by -0.54 A, from the best plane formed by the four remaining atoms. The molecules are held together by a network of hydrogen bonds, the water molecules playing a dominant role in the stability of the structure.
Resumo:
The crystal and molecular structure of the title compound (1) has been determined by the heavy-atom method from 1038 observed three-dimensional photographic data. Crystals are orthorhombic, with a = 20.07 ± 0.02, b= 10.05 ± 0.02, c= 7.31 ± 0.01 Å, space group P212121, with Z= 4. The structure was refined by block diagonal leastsquares to R 0.099. The conformation of the norbornane moiety is discussed. The seven-membered ring portion of the molecule adopts an approximate chair conformation. The packing of the molecules in the crystal is mainly a consequence of van der Waals interactions.
Resumo:
Certain binary codes having good autocorrelation properties akin to Barker codes are studied.
Resumo:
The crystal structure of ferroelectric sodium meta vanadate, NaVO3 has been solved using three dimensional X-ray data and refined to an R-value of 0.077 for 375 observed reflections. The crystal belongs to the monoclinic system with space group Cc and with unit cell dimensions a = 10.494 (9) Aring, b = 9.434 (7) Aring, c = 5.863 (6) Aring and β = 108° 48' in the room temperature ferroelectric phase. The unit cell dimensions in the high temperature paraelectric phase (above 380°C) are a = 10.595 (15) Aring, b = 9.671 (10) Aring, c = 5.926 (8) Aring and β = 108° 45' with space group C2/c. The crystal structure may be viewed as consisting of alternate channels of sodium polyhedra and VO4 tetrahedra.