988 resultados para Normally Complemented Subgroups
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
This adult cohort determined the incidence and patients' short-term outcomes of severe traumatic brain injury (sTBI) in Switzerland and age-related differences. A prospective cohort study with a follow-up at 14 days was performed. Patients ≥16 years of age sustaining sTBI and admitted to 1 of 11 trauma centers were included. sTBI was defined by an Abbreviated Injury Scale of the head (HAIS) score >3. The centers participated from 6 months to 3 years. The results are presented as percentages, medians, and interquartile ranges (IQRs). Subgroup analyses were performed for patients ≤65 years (younger) and >65 (elderly). sTBI was observed in 921 patients (median age, 55 years; IQR, 33-71); 683 (74.2%) were male. Females were older (median age, 67 years; IQR, 42-80) than males (52; IQR, 31-67; p<0.00001). The estimated incidence was 10.58 per 100,000 inhabitants per year. Blunt trauma was observed in 879 patients (95.4%) and multiple trauma in 283 (30.7%). Median Glasgow Coma Score (GCS) on the scene was 9 (IQR 4-14; 8 in younger, 12 in elderly) and in emergency departments 5 (IQR, 3-14; 3 in younger, 8 in elderly). Trauma mechanisms included the following: 484 patients with falls (52.6%; younger, 242 patients [50.0%]; elderly, 242 [50.0%]), 291 with road traffic accidents (31.6%; younger, 237 patients [81.4%]; elderly, 54 [18.6%]), and 146 with others (15.8%). Mortality was 30.2% (24.5% in younger, 40.9% in elderly). Median GCS at 14 days was 15 (IQR, 14-15) without differences among subgroups. Estimated incidence of sTBI in Switzerland was low, age was high, and mortality considerable. The elderly had higher initial GCS and a higher death rate, but high GCS at 14 days.
Resumo:
Conservation of the function of open reading frames recently identified in fungal genome projects can be assessed by complementation of deletion mutants of putative Saccharomyces cerevisiae orthologs. A parallel complementation assay expressing the homologous wild type S. cerevisiae gene is generally performed as a positive control. However, we and others have found that failure of complementation can occur in this case. We investigated the specific cases of S. cerevisiae TBF1 and TIM54 essential genes. Heterologous complementation with Candida glabrata TBF1 or TIM54 gene was successful using the constitutive promoters TDH3 and TEF. In contrast, homologous complementation with S. cerevisiae TBF1 or TIM54 genes failed using these promoters, and was successful only using the natural promoters of these genes. The reduced growth rate of S. cerevisiae complemented with C. glabrata TBF1 or TIM54 suggested a diminished functionality of the heterologous proteins compared to the homologous proteins. The requirement of the homologous gene for the natural promoter was alleviated for TBF1 when complementation was assayed in the absence of sporulation and germination, and for TIM54 when two regions of the protein presumably responsible for a unique translocation pathway of the TIM54 protein into the mitochondrial membrane were deleted. Our results demonstrate that the use of different promoters may prove necessary to obtain successful complementation, with use of the natural promoter being the best approach for homologous complementation.
Resumo:
Axons, and particularly regenerating axons, have high metabolic needs in order to maintain critical functions such as axon transport and membrane depolarization. Though some of the required energy likely comes form extracellular glucose and ATP generated in the soma, we and others hypothesize that some of the energy may be supplied by lactate. Unlike glucose that requires glycolytic enzymes to produce pyruvate, lactate can be converted directly to pyruvate by lactate dehydrogenase and transported into mitochondria for oxidative metabolism. In order to be transported into or out of cells, lactate requires specific monocarboxylate transporters (MCTs), the most abundant of which is MCT1. If MCT1 and lactate are critical for nerve function and regeneration, we hypothesize that MCT1 heterozygote null mice, which appear phenotypically normal despite having approximately 40% MCT1 as compared to wildtype littermate mice, would have reduced capacity for repair following nerve injury. To investigate this, adult MCT1 heterozygote null mice or wild-type mice underwent unilateral sciatic nerve crush in the proximal thigh. We found that regeneration of the sciatic nerve, as measured by recovery of compound muscle action potentials (CMAP) in the lateral plantar muscles following proximal sciatic nerve stimulation, was delayed from a median of 21 days in wildtype mice to 38.5 days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote null mice had no recovery of CMAP by the endpoint of the study at 42 days, while all of the wild-type mice had recovered. In addition, the maximal amplitude of CMAP recovery in MCT1 heterozygote mull mice was reduced from a mean of 3 mV to 0.5 mV. As would be expected, the denervated gastrocnemius muscle of MCT1 heterozygote null mice remained atrophic at 42 days compared to wild-type mice. Our experiments show that lactate supplied through MCT1 is necessary for nerve regeneration. Experiments are underway to determine whether loss of MCT1 prevents nerve regrowth directly due to reduced energy supply to axons or indirectly by dysfunctional Schwann cells normally dependent on lactate supply through MCT1.
Resumo:
OBJECTIVES: We evaluated the prenatal detection of gastrointestinal obstruction (GIO, including atresia, stenosis, absence or fistula) by routine ultrasonographic examination in an unselected population all over Europe. METHODS: Data from 18 congenital malformation registries in 11 European countries were analysed. These multisource registries used the same methodology. All fetuses/neonates with GIO confirmed within 1 week after birth who had prenatal sonography and were born during the study period (1 July 1996 to 31 December 1998) were included. RESULTS: There were 670 793 births in the area covered and 349 fetuses/neonates had GIO. The prenatal detection rate of GIO was 34%; of these 40% were detected < or = 24 weeks of gestation (WG). A total of 31% (60/192) of the isolated GIO were detected prenatally, as were 38% (59/157) of the associated GIO (p=0.26). The detection rate was 25% for esophageal obstruction (31/122), 52% for duodenal obstruction (33/64), 40% for small intestine obstruction (27/68) and 29% for large intestine obstruction (28/95) (p=0.002). The detection rate was higher in countries with a policy of routine obstetric ultrasound. Fifteen percent of pregnancies were terminated (51/349). Eleven of these had chromosomal anomalies, 31 multiple malformations, eight non-chromosomal recognized syndromes, and one isolated GIO. The participating registries reflect the various national policies for termination of pregnancy (TOP), but TOPs after 24 WG (11/51) do not appear to be performed more frequently in countries with a liberal TOP policy. CONCLUSION: This European study shows that the detection rate of GIO depends on the screening policy and on the sonographic detectability of GIO subgroups.
Resumo:
Many animal species face periods of chronic nutritional stress during which the individuals must continue to develop, grow, and/or reproduce despite low quantity or quality of food. Here, we use experimental evolution to study adaptation to such chronic nutritional stress in six replicate Drosophila melanogaster populations selected for the ability to survive and develop within a limited time on a very poor larval food. In unselected control populations, this poor food resulted in 20% lower egg-to-adult viability, 70% longer egg-to-adult development, and 50% lower adult body weight (compared to the standard food on which the flies were normally maintained). The evolutionary changes associated with adaptation to the poor food were assayed by comparing the selected and control lines in a common environment for different traits after 29-64 generations of selection. The selected populations evolved improved egg-to-adult viability and faster development on poor food. Even though the adult dry weight of selected flies when raised on the poor food was lower than that of controls, their average larval growth rate was higher. No differences in proportional pupal lipid content were observed. When raised on the standard food, the selected flies showed the same egg-to-adult viability and the same resistance to larval heat and cold shock as the controls and a slightly shorter developmental time. However, despite only 4% shorter development time, the adults of selected populations raised on the standard food were 13% smaller and showed 20% lower early-life fecundity than the controls, with no differences in life span. The selected flies also turned out less tolerant to adult malnutrition. Thus, fruit flies have the genetic potential to adapt to poor larval food, with no detectable loss of larval performance on the standard food. However, adaptation to larval nutritional stress is associated with trade-offs with adult fitness components, including adult tolerance to nutritional stress.
Resumo:
Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520-3100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g., the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.
Resumo:
Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genome-wide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their classification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X chromosome location, with CT-X genes being significantly more testis-restricted than non-X CT. Applying this core classification in a genome-wide survey we identified >30 CT candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testis-restricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.
Resumo:
The Pseudomonas aeruginosa gene anr, which encodes a structural and functional analog of the anaerobic regulator Fnr in Escherichia coli, was mapped to the SpeI fragment R, which is at about 59 min on the genomic map of P. aeruginosa PAO1. Wild-type P. aeruginosa PAO1 grew under anaerobic conditions with nitrate, nitrite, and nitrous oxide as alternative electron acceptors. An anr deletion mutant, PAO6261, was constructed. It was unable to grow with these alternative electron acceptors; however, its ability to denitrify was restored upon the introduction of the wild-type anr gene. In addition, the activities of two enzymes in the denitrification pathway, nitrite reductase and nitric oxide reductase, were not detectable under oxygen-limiting conditions in strain PAO6261 but were restored when complemented with the anr+ gene. These results indicate that the anr gene product plays a key role in anaerobically activating the entire denitrification pathway.
Resumo:
Several large randomized trials showed that tamoxifen alone is no more the standard adjuvant hormonal therapy for menopausal patients. Aromatase inhibitors, given upfront or sequentially after tamoxifen, confirmed their efficacy by improving disease free survival, risk of distant metastasis and overall survival in some situations or subgroups of patients. These drugs are usually well tolerated, but they clearly increase bone mineral density loss as well as the risk of fractures and their long term safety on the cardio-vascular system needs to be followed. Thus, even if the role of the aromatase inhibitors is now evident in the adjuvant therapy of postmenopausal women the benefice/risk ratio should be carefully evaluated for each patient.
Resumo:
PURPOSE: To describe osseous, chondral and tendinous lesions associated with fissures of the posterior labrum. To better understand the pathological processes leading to fissure of the posterior labrum. Materials and methods. Retrospective study of 43 CT arthrograms performed in 43 patients that showed a fissure of the posterior labrum. The following associated lesions were noted: osseous and chondral remodeling of the humeral head and/or glenoid and articular surface fissures of the rotator cuff. Based on type of associated lesions, patients were separated into one of four pathological subgroups: posterior instability, posterosuperior or internal impingement, anterior instability and isolated fissure of the posterior labrum. RESULTS: Sixteen patients (37.2%) of patients showed posterior instability, 12 (27.9%) showed lesions of internal impingement, and 11 (25.6%) showed lesions of anterior instability. Only 4 patients (9.3%) had an isolated fissure of the posterior labrum. CONCLUSION: Posterior instability, internal impingement and anterior instability are the main pathologies leading to fissure of the posterior labrum, which seldom occurs in isolation. Evaluation of these associated lesions allows understanding of the underlying pathological processes leading to fissure of the posterior labrum.
Resumo:
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.
Resumo:
An unusual subset of mature T cells expresses natural killer (NK) cell-related surface markers such as interleukin-2 receptor beta (IL-2R beta; CD122) and the polymorphic antigen NK1.1. These "NK-like" T cells are distinguished by their highly skewed V alpha and V beta repertoire and by their ability to rapidly produce large amounts of IL-4 upon T cell receptor (TCR) engagement. The inbred mouse strain SJL (which expresses NK1.1 on its NK cells) has recently been reported to lack NK1.1+ T cells and consequently to be deficient in IL-4 production upon TCR stimulation. We show here, however, that SJL mice have normal numbers of IL-2R beta+ T cells with a skewed V beta repertoire characteristic of "NK-like" T cells. Furthermore lack of NK1.1 expression on IL-2R beta+ T cells in SJL mice was found by backcross analysis to be controlled by a single recessive gene closely linked to the NKR-P1 complex on chromosome 6 (which encodes the NK1.1 antigen). Analysis of a panel of inbred mouse strains further demonstrated that lack of NK1.1 expression on IL-2R beta+ T cells segregated with NKR-P1 genotype (as assessed by restriction fragment length polymorphism) and thus was not restricted to the SJL strain. In contrast, defective TCR induced IL-4 production (which appeared to be a unique property of SJL mice) seems to be controlled by two recessive genes unlinked to NKR-P1. Collectively, our data indicate that "NK-like" T cells develop normally in SJL mice despite genetically distinct defects in NK1.1 expression and inducible IL-4 production.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
BACKGROUND: The dose intensity of chemotherapy can be increased to the highest possible level by early administration of multiple and sequential high-dose cycles supported by transfusion with peripheral blood progenitor cells (PBPCs). A randomized trial was performed to test the impact of such dose intensification on the long-term survival of patients with small cell lung cancer (SCLC). METHODS: Patients who had limited or extensive SCLC with no more than two metastatic sites were randomly assigned to high-dose (High, n = 69) or standard-dose (Std, n = 71) chemotherapy with ifosfamide, carboplatin, and etoposide (ICE). High-ICE cycles were supported by transfusion with PBPCs that were collected after two cycles of treatment with epidoxorubicin at 150 mg/m(2), paclitaxel at 175 mg/m(2), and filgrastim. The primary outcome was 3-year survival. Comparisons between response rates and toxic effects within subgroups (limited or extensive disease, liver metastases or no liver metastases, Eastern Cooperative Oncology Group performance status of 0 or 1, normal or abnormal lactate dehydrogenase levels) were also performed. RESULTS: Median relative dose intensity in the High-ICE arm was 293% (range = 174%-392%) of that in the Std-ICE arm. The 3-year survival rates were 18% (95% confidence interval [CI] = 10% to 29%) and 19% (95% CI = 11% to 30%) in the High-ICE and Std-ICE arms, respectively. No differences were observed between the High-ICE and Std-ICE arms in overall response (n = 54 [78%, 95% CI = 67% to 87%] and n = 48 [68%, 95% CI = 55% to 78%], respectively) or complete response (n = 27 [39%, 95% CI = 28% to 52%] and n = 24 [34%, 95% CI = 23% to 46%], respectively). Subgroup analyses showed no benefit for any outcome from High-ICE treatment. Hematologic toxicity was substantial in the Std-ICE arm (grade > or = 3 neutropenia, n = 49 [70%]; anemia, n = 17 [25%]; thrombopenia, n = 17 [25%]), and three patients (4%) died from toxicity. High-ICE treatment was predictably associated with severe myelosuppression, and five patients (8%) died from toxicity. CONCLUSIONS: The long-term outcome of SCLC was not improved by raising the dose intensity of ICE chemotherapy by threefold.