934 resultados para NUCLEUS-ACCUMBENS CIRCUITRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of the borate complex responsible for the enantiodifferentiation of amines using a previously reported three-component protocol has been established. The choice between an ion pair and an amine-coordinated complex with the N atom of the amine coordinated to the B atom is favored for the former structure based on the DFT-calculated B-11 NMR chemical shifts. In contrast to expectations, the anisotropies of the quadrupolar B-11 nucleus for the two structures were calculated to be indistinguishable with regard to their effect on the linewidth of the NMR signal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxovanadium(IV) catecholates of terpyridyl bases, viz. VO(cat)(L)] (L - phtpy, 1; stpy, 2) and VO(dopa-NBD)(L)] (L = phtpy, 3; stpy, 4), where cat is benzene-1,2-diolate, dopa-NBD is 4-(2-(4-nitrobenzoc]1,2,5]oxadiazol-7-ylamino)ethyl)benzene-1,2-di olate, phtpy is (4'-phenyl)-2,2':6',2 `'-terpyridine and stpy is (2,2':6',2 `'-terpyridin-4'-oxy)ethyl-beta-D-glucopyranoside, were prepared and characterized, and their DNA binding, DNA photo-cleavage activity, photocytotoxicity in red light (600-720 nm), cellular uptake and intracellular localization behaviour were studied. The complexes showed an intense ligand-to-metal charge transfer (LMCT) band at similar to 500 nm. The sugar appended complexes 2 and 4 showed significant uptake into the cancer cells. The dopa-NBD complexes 3 and 4 showing green emission were used for cellular imaging. The complexes showed diffused cellular localization mainly in the cytosol and to a lesser extent into the nucleus as evidenced from the confocal microscopy study. Complexes 1-4 showed significant photocytotoxicity in the PDT spectral window giving low IC50 values, while remaining relatively non-toxic in dark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron(III) complexes Fe(L)(L') (NO3)]-in which L is phenyl-N, N-bis(pyridin-2-yl) methyl]methanamine (1), (anthracen-9-yl)N, N-bis(pyridin-2-yl) methyl] methanamine (2), (pyreny-1-yl)-N, N-bis(pyridin- 2-yl) methyl] methanamine (3-5), and L' is catecholate (1-3), 4-tert-butyl catecholate (4), and 4-(2-aminoethyl)benzene- 1,2-diolate (5)-were synthesized and their photocytotoxic proper-ties examined. The five electron-paramagnetic complexes displayed a FeIII/ Fe-II redox couple near similar to 0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1m tetrabutylammonium perchlorate (TBAP). They showed unpre-cedented photocytotoxicity in red light (600-720 nm) to give IC50-15 mm in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)-DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of dual enzyme responsive hollow nanocapsules which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements, integrated in the nanocapsule walls, undergo degradation in the presence of either trypsin or hyaluronidase leading to the release of encapsulated drug molecules. These nanocapsules, which were crosslinked and functionalised with folic acid, showed minimal drug leakage when kept in pH 7.4 PBS buffer, but released the drug molecules at a rapid rate in the presence of either one of the triggering enzymes. Studies on cellular interactions of these nanocapsules revealed that doxorubicin loaded nanocapsules were taken up by cervical cancer cells via folic acid receptor medicated endocytosis. Interestingly the nanocapsules were able to disintegrate inside the cancer cells and release doxorubicin which then migrated into the nucleus to induce cell death. This study indicates that these nanocapsules fabricated from biopolymers can serve as an excellent platform for targeted intracellular drug delivery to cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional positioning of the nuclear genome plays an important role in the epigenetic regulation of genes. Although nucleographic domain compartmentalization in the regulation of epigenetic state and gene expression is well established in higher organisms, it remains poorly understood in the pathogenic parasite Plasmodium falciparum. In the present study, we report that two histone tail modifications, H3K9Ac and H3K14Ac, are differentially distributed in the parasite nucleus. We find colocalization of active gene promoters such as Tu1 (tubulin-1 expressed in the asexual stages) with H3K9Ac marks at the nuclear periphery. By contrast, asexual stage inactive gene promoters such as Pfg27 (gametocyte marker) and Pfs28 (ookinete marker) occupy H3K9Ac devoid zones at the nuclear periphery. The histone H3K9 is predominantly acetylated by the PCAF/GCN5 class of lysine acetyltransferases, which is well characterized in the parasite. Interestingly, embelin, a specific inhibitor of PCAF/GCN5 family histone acetyltransferase, selectively decreases total H3K9Ac acetylation levels (but not H3K14Ac levels) around the var gene promoters, leading to the downregulation of var gene expression, suggesting interplay among histone acetylation status, as well as subnuclear compartmentalization of different genes and their activation in the parasites. Finally, we found that embelin inhibited parasitic growth at the low micromolar range, raising the possibility of using histone acetyltransferases as a target for antimalarial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of polypyridyl and curcumin-based ligands, viz. VO(cur)(L)Cl] (1, 2) and VO(scur)(L)Cl] (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3), dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4), Hcur is curcumin and Hscur is diglucosylcurcumin, were synthesized and characterized and their cellular uptake, photocytotoxicity, intracellular localization, DNA binding, and DNA photo-cleavage activity studied. Complex VO(cur)(phen)Cl] (1) has (VN2O3Cl)-N-IV distorted octahedral geometry as evidenced from its crystal structure. The sugar appended complexes show significantly higher uptake into the cancer cells compared to their normal analogues. The complexes are remarkably photocytotoxic in visible light (400-700 nm) giving an IC50 value of <5 mu M in HeLa, HaCaT and MCF-7 cells with no significant dark toxicity. The green emission of the complexes was used for cellular imaging. Predominant cytosolic localization of the complexes 1-4 to a lesser extent into the nucleus was evidenced from confocal imaging. The complexes as strong binders of calf thymus DNA displayed photocleavage of supercoiled pUC19 DNA in red light by generating (OH)-O-center dot radicals as the ROS. The cell death is via an apoptotic pathway involving the ROS. Binding to the VO2+ moiety has resulted in stability against any hydrolytic degradation of curcumin along with an enhancement of its photocytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a low energy memory decoder architecture for ultra-low-voltage systems containing multiple voltage domains. Due to limitations in scalability of memory supply voltages, these systems typically contain a core operating at subthreshold voltages and memories operating at a higher voltage. This difference in voltage provides a timing slack on the memory path as the core supply is scaled. The paper analyzes the feasibility and trade-offs in utilizing this timing slack to operate a greater section of memory decoder circuitry at the lower supply. A 256x16-bit SRAM interface has been designed in UMC 65nm low-leakage process to evaluate the above technique with the core and memory operating at 280 mV and 500 mV respectively. The technique provides a reduction of up to 20% in energy/cycle of the row decoder without any penalty in area and system-delay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neonatal temperature monitoring system operating in subthreshold regime that utilizes time mode signal processing is presented. Resistance deviations in a thermistor due to temperature variations are converted to delay variations that are subsequently quantized by a Delay measurement unit (DMU). The DMU does away with the need for any analog circuitry and is synthesizable entirely from digital logic. An FPGA implementation of the system demonstrates the viability of employing time mode signal processing, and measured results show that temperature resolution better than 0.1 degrees C can be achieved using this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 +/- 35.01 nm, 555.74 +/- 19.93 nm, and 1620.24 +/- 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluctuations exhibited by the cross sections generated in a compound-nucleus reaction or, more generally, in a quantum-chaotic scattering process, when varying the excitation energy or another external parameter, are characterized by the width Gamma(corr) of the cross-section correlation function. Brink and Stephen Phys. Lett. 5, 77 (1963)] proposed a method for its determination by simply counting the number of maxima featured by the cross sections as a function of the parameter under consideration. They stated that the product of the average number of maxima per unit energy range and Gamma(corr) is constant in the Ercison region of strongly overlapping resonances. We use the analogy between the scattering formalism for compound-nucleus reactions and for microwave resonators to test this method experimentally with unprecedented accuracy using large data sets and propose an analytical description for the regions of isolated and overlapping resonances.