953 resultados para NEUROSCIENCE
Resumo:
Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Attention deficit hyperactivity disorder (ADHD) and autism are two neurodevelopmental disorders associated with prominent executive dysfunction, which may be underpinned by disruption within fronto-striatal and fronto-parietal circuits. We probed executive function in these disorders using a sustained attention task with a validated brain-behaviour basis. Twenty-three children with ADHD, 21 children with high-functioning autism (HFA) and 18 control children were tested on the Sustained Attention to Response Task (SART). In a fixed sequence version of the task, children were required to withhold their response to a predictably occurring no-go target (3) in a 1-9 digit sequence; in the random version the sequence was unpredictable. The ADHD group showed clear deficits in response inhibition and sustained attention, through higher errors of commission and omission on both SART versions. The HFA group showed no sustained attention deficits, through a normal number of omission errors on both SART versions. The HFA group showed dissociation in response inhibition performance, as indexed by commission errors. On the Fixed SART, a normal number of errors was made, however when the stimuli were randomised, the HFA group made as many commission errors as the ADHD group. Greater slow-frequency variability in response time and a slowing in mean response time by the ADHD group suggested impaired arousal processes. The ADHD group showed greater fast-frequency variability in response time, indicative of impaired top-down control, relative to the HFA and control groups. These data imply involvement of fronto-parietal attentional networks and sub-cortical arousal systems in the pathology of ADHD and prefromal cortex dysfunction in children with HFA. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Response time (RT) variability is a common finding in ADHD research. RT variability may reflect frontal cortex function and may be related to deficits in sustained attention. The existence of a sustained attention deficit in ADHD has been debated, largely because of inconsistent evidence of time-on-task effects. A fixed-sequence Sustained Attention to Response Task (SART) was given to 29 control, 39 unimpaired and 24 impaired-ADHD children (impairment defined by the number of commission errors). The response time data were analysed using the Fast Fourier Transform, to define the fast-frequency and slow-frequency contributions to overall response variability. The impaired-ADHD group progressively slowed in RT over the course of the 5.5 min task, as reflected in this group's greater slow-frequency variability. The fast-frequency trial-to-trial variability was also significantly greater, but did not differentially worsen over the course of the task. The higher error rates of the impaired-ADHD group did not become differentially greater over the length of the task. The progressive slowing in mean RT over the course of the task may relate to a deficit in arousal in the impaired-ADHD group. The consistently poor performance in fast-frequency variability and error rates may be due to difficulties in sustained attention that fluctuate on a trial-to-trial basis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Autism and Asperger's disorder (AD) are neurodevelopmental conditions that affect cognitive and social-communicative function. Using a movement-related potential (MRP) paradigm, we investigated the clinical and neurobiological issue of 'disorder separateness' versus 'disorder variance' in autism and AD. This paradigm has been used to assess basal ganglia/supplementary motor functioning in Parkinson's disease. Three groups (high functioning autism [HFA]: 16 males, 1 female; mean age 12y 5mo [SD 4y 4mo]; AD: 11 males, 2 females; mean age 13y 5mo [SD 3y 8mo]; comparison group: 13 males, 8 females; mean age 13y 10mo, [SD 3y 11 mo]) completed a cued motor task during electroencephalogram recording of MRPs. The HFA group showed reduced peak amplitude at Cz, indicating less activity over the supplementary motor area during movement preparation. Although an overall significant between-group effect was found for early slope and peak amplitude, subanalysis revealed that the group with AD did not differ significantly from either group. However, it is suggested that autism and AD may be dissociated on the basis of brain-behaviour correlations of IQ with specific neurobiological measures. The overlap between MRP traces for autism and Parkinson's disease suggests that the neurobiological wiring of motor functioning in autism may bypass the supplementary motor area/primary motor cortex pathway.
Resumo:
Huntington's disease patients perform automatic movements in a bradykinetic manner, somewhat similar to patients with Parkinson's disease. Cortical activity relating to the preparation of movement in Parkinson's disease is significantly improved when a cognitive strategy is used. It is unknown whether patients with Huntington's disease can utilise an attentional strategy, and what effect this strategy would have on the premovement cortical activity. Movement-related potentials were recorded from 12 Huntington's disease patients and controls performing externally cued finger tapping movement, allowing an examination of cortical activity related to movement performance and bradykinesia in this disease. All subjects were tested in two conditions, which differed only by the presence or absence of the cognitive strategy. The Huntington's disease group, unlike controls, did not produce a rising premovement potential in the absence of the strategy. The Huntington's disease group did produce a rising premovement potential for the strategy condition, but the early slope of the potential was significantly reduced compared with the control group's early slope. These results are similar to those found previously with Parkinson's disease patients. The strategy may have put the task, which previously might have been under deficient automatic control, under attentional control. (C) 2002 Movement Disorder Society.
Resumo:
Anomalies of movement are observed both clinically and experimentally in schizophrenia. While the basal ganglia have been implicated in its pathogenesis, the nature of such involvement is equivocal. The basal ganglia may be involved in bimanual coordination through their input to the supplementary motor area (SMA). While a neglected area of study in schizophrenia. a bimanual movement task may provide a means of assessing the functional integrity of the motor circuit. Twelve patients with chronic schizophrenia and 12 matched control participants performed a bimanual movement task on a set of vertically mounted cranks at different speeds (1 and 2 Hz) and phase relationships. Participants performed in-phase movements (hands separated by 0 degrees) and out-of-phase movements (hands separated by 180 degrees) at both speeds with an external cue on or off. All participants performed the in-phase movements well. irrespective of speed or cueing conditions. Patients with schizophrenia were unable to perform the out-of-phase movements, particularly at the faster speed, reverting instead to the in-phase movement. There was no effect of external cueing on any of the movement conditions. These results suggest a specific problem of bimanual coordination indicative of SMA dysfunction per se and/or faulty callosal integration. A disturbance in the ability to switch attention during the out-of-phase task may also be involved. (C) 2001 Academic Press.
Resumo:
The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.
Resumo:
The purpose of the experiment was to compare the level of synchronization exhibited by pairs of motor units located within and between functionally distinct regions of the biceps brachii muscle. Pairs of single motor units were recorded from seven subjects using separate electrodes located in the lateral and medial aspects of the long head of biceps brachii. Participants were required to exert a combination of flexion and supination torques so that both motor units discharged at approximately 10 pps for a parts per thousand yen200 s and the level of motor unit synchronization could be quantified. When motor unit recordings were sufficiently stable at the completion of this synchrony task, a series of ramp contractions with multiple combinations of flexion and supination torques were performed to characterize the recruitment thresholds of the motor units. Common input strength (CIS) was significantly greater (P <0.01) for the within-region pairs of motor units (0.28 extra sync. imps/s, n = 26) than for the between-region pairs (0.13 extra sync. imps/s, n = 18), but did not differ significantly for the 12 within-region pairs from the lateral head and 14 from the medial head (0.27 vs. 0.29 extra sync. imps/s; P = 0.83). Recruitment thresholds were measured for 33 motor units, but there was only a weak association between CIS and the respective recruitment patterns for motor unit pairs (n = 9). The present investigation provides evidence of a differential distribution of synaptic input across the biceps brachii motor neuron pool, but this appears to have minimal association with the recruitment patterns for individual motor units.
Resumo:
This exploratory study was undertaken to investigate the mechanisms that contributed to improvements in upper limb function following a novel training program. Surface electromyography (EMG) was used to examine training-induced changes in the pattern of triceps and biceps activation during reaching tasks in stroke survivors with severe paresis in the chronic stage of recovery. The EMG data were obtained in the context of a single blind randomised clinical trial conducted with 42 stroke survivors with minimal upper limb muscle activity and who were more than 6 months post-stroke. Of the 33 participants who completed the study, 10 received training of reaching using a non-robotic upper limb training device, the SMART Arm, with EMG triggered functional electrical stimulation (EMG-stim), 13 received training of reaching using the SMART Arm alone, and 10 received no intervention. Each intervention group engaged in 12 1-h training sessions over a 4-week period. Clinical and laboratory measures of upper limb function were administered prior to training (0 weeks), at completion (4 weeks) and 2 months (12 weeks) after training. The primary outcome measure was 'upper arm function' which is Item 6 of the Motor Assessment Scale (MAS). Laboratory measures consisted of two multijoint reaching tasks to assess 'maximum isometric force' and 'maximum distance reached'. Surface EMG was used to monitor triceps brachii and biceps brachii during the two reaching tasks. To provide a comparison with normal values, seven healthy adults were tested on one of the reaching tasks according to the same procedure. Study findings demonstrated a statistically significant improvement in upper limb function for stroke participants in the two training groups compared to those who received no training however no difference was found between the two training groups. For the reaching tasks, all stroke participants, when compared to normal healthy adults, exhibited lower triceps and biceps activation and a lower ratio of triceps to biceps activation. Following training, stroke participants demonstrated increased triceps activation and an increased ratio of triceps to biceps activation for the task that was trained. Better performance was associated with greater triceps activation and a higher ratio of triceps to biceps activation. The findings suggest that increased activation of triceps as an agonist and an improved coordination between triceps and biceps could have mediated the observed changes in arm function. The changes in EMG activity were small relative to the changes in arm function indicating that factors, such as the contribution of other muscles of reaching, may also be implicated.
Resumo:
A specific impairment in phoneme awareness has been hypothesized as one of the current explanations for dyslexia. We examined attentional shifts towards phonological information as indexed by event-related potentials (ERPs) in normal readers and dyslexic adults. Participants performed a lexical decision task on spoken stimuli of which 80% started with a standard phoneme and 20% with a deviant phoneme. A P300 modulation was expected for deviants in control adults, indicating that the phonological change had been detected. A mild and right-lateralized P300 was observed for deviant stimuli in controls, but was absent in dyslexic adults. This result suggests that dyslexic adults fail to make shifts of attention to phonological cues in the same way that normal adult readers do. (C) 2003 Elsevier Ireland Ltd. All rights reserved.