6 resultados para NEUROSCIENCE

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory-motor circuits course through the parietal cortex of the human and monkey brain. How parietal cortex manipulates these signals has been an important question in behavioral neuroscience. This thesis presents experiments that explore the contributions of monkey parietal cortex to sensory-motor processing, with an emphasis on the area's contributions to reaching. First, it is shown that parietal cortex is organized into subregions devoted to specific movements. Area LIP encodes plans to make saccadic eye movements. A nearby area, the parietal reach region (PRR), plans reaches. A series of experiments are then described which explore the contributions of PRR to reach planning. Reach plans are represented in an eye-centered reference frame in PRR. This representation is shown to be stable across eye movements. When a sequence of reaches is planned, only the impending movement is represented in PRR, showing that the area is more related to movement planning than to storing the memory of reach targets. PRR resembles area LIP in each of these properties: the two areas may provide a substrate for hand-eye coordination. These findings yield new perspectives on the functions of the parietal cortex and on the organization of sensory-motor processing in primate brains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.

It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.

The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines foundational questions in behavioral economics—also called psychology and economics—and the neural foundations of varied sources of utility. We have three primary aims: First, to provide the field of behavioral economics with psychological theories of behavior that are derived from neuroscience and to use those theories to identify novel evidence for behavioral biases. Second, we provide neural and micro foundations of behavioral preferences that give rise to well-documented empirical phenomena in behavioral economics. Finally, we show how a deep understanding of the neural foundations of these behavioral preferences can feed back into our theories of social preferences and reference-dependent utility.

The first chapter focuses on classical conditioning and its application in identifying the psychological underpinnings of a pricing phenomenon. We return to classical conditioning again in the third chapter where we use fMRI to identify varied sources of utility—here, reference dependent versus direct utility—and cross-validate our interpretation with a conditioning experiment. The second chapter engages social preferences and, more broadly, causative utility (wherein the decision-maker derives utility from making or avoiding particular choices).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waking up from a dreamless sleep, I open my eyes, recognize my wife’s face and am filled with joy. In this thesis, I used functional Magnetic Resonance Imaging (fMRI) to gain insights into the mechanisms involved in this seemingly simple daily occurrence, which poses at least three great challenges to neuroscience: how does conscious experience arise from the activity of the brain? How does the brain process visual input to the point of recognizing individual faces? How does the brain store semantic knowledge about people that we know? To start tackling the first question, I studied the neural correlates of unconscious processing of invisible faces. I was unable to image significant activations related to the processing of completely invisible faces, despite existing reports in the literature. I thus moved on to the next question and studied how recognition of a familiar person was achieved in the brain; I focused on finding invariant representations of person identity – representations that would be activated any time we think of a familiar person, read their name, see their picture, hear them talk, etc. There again, I could not find significant evidence for such representations with fMRI, even in regions where they had previously been found with single unit recordings in human patients (the Jennifer Aniston neurons). Faced with these null outcomes, the scope of my investigations eventually turned back towards the technique that I had been using, fMRI, and the recently praised analytical tools that I had been trusting, Multivariate Pattern Analysis. After a mostly disappointing attempt at replicating a strong single unit finding of a categorical response to animals in the right human amygdala with fMRI, I put fMRI decoding to an ultimate test with a unique dataset acquired in the macaque monkey. There I showed a dissociation between the ability of fMRI to pick up face viewpoint information and its inability to pick up face identity information, which I mostly traced back to the poor clustering of identity selective units. Though fMRI decoding is a powerful new analytical tool, it does not rid fMRI of its inherent limitations as a hemodynamics-based measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As borne out by everyday social experience, social cognition is highly dependent on context, modulated by a host of factors that arise from the social environment in which we live. While streamlined laboratory research provides excellent experimental control, it can be limited to telling us about the capabilities of the brain under artificial conditions, rather than elucidating the processes that come into play in the real world. Consideration of the impact of ecologically valid contextual cues on social cognition will improve the generalizability of social neuroscience findings also to pathology, e.g., to psychiatric illnesses. To help bridge between laboratory research and social cognition as we experience it in the real world, this thesis investigates three themes: (1) increasing the naturalness of stimuli with richer contextual cues, (2) the potentially special contextual case of social cognition when two people interact directly, and (3) a third theme of experimental believability, which runs in parallel to the first two themes. Focusing on the first two themes, in work with two patient populations, we explore neural contributions to two topics in social cognition. First, we document a basic approach bias in rare patients with bilateral lesions of the amygdala. This finding is then related to the contextual factor of ambiguity, and further investigated together with other contextual cues in a sample of healthy individuals tested over the internet, finally yielding a hierarchical decision tree for social threat evaluation. Second, we demonstrate that neural processing of eye gaze in brain structures related to face, gaze, and social processing is differently modulated by the direct presence of another live person. This question is investigated using fMRI in people with autism and controls. Across a range of topics, we demonstrate that two themes of ecological validity — integration of naturalistic contextual cues, and social interaction — influence social cognition, that particular brain structures mediate this processing, and that it will be crucial to study interaction in order to understand disorders of social interaction such as autism.