998 resultados para N-gram prediction
Resumo:
BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal morbidity and mortality. Women with type 1 diabetes are considered a high-risk group for developing pre-eclampsia. Much research has focused on biomarkers as a means of screening for pre-eclampsia in the general maternal population; however, there is a lack of evidence for women with type 1 diabetes.
OBJECTIVES: To undertake a systematic review to identify potential biomarkers for the prediction of pre-eclampsia in women with type 1 diabetes.
SEARCH STRATEGY: We searched Medline, EMBASE, Maternity and Infant Care, Scopus, Web of Science and CINAHL SELECTION CRITERIA: Studies were included if they measured biomarkers in blood or urine of women who developed pre-eclampsia and had pre-gestational type 1 diabetes mellitus Data collection and analysis A narrative synthesis was adopted as a meta-analysis could not be performed, due to high study heterogeneity.
MAIN RESULTS: A total of 72 records were screened, with 21 eligible studies being included in the review. A wide range of biomarkers was investigated and study size varied from 34 to 1258 participants. No single biomarker appeared to be effective in predicting pre-eclampsia; however, glycaemic control was associated with an increased risk while a combination of angiogenic and anti-angiogenic factors seemed to be potentially useful.
CONCLUSIONS: Limited evidence suggests that combinations of biomarkers may be more effective in predicting pre-eclampsia than single biomarkers. Further research is needed to verify the predictive potential of biomarkers that have been measured in the general maternal population, as many studies exclude women with diabetes preceding pregnancy.
Resumo:
Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections
Resumo:
The high level of unemployment is one of the major problems in most European countries nowadays. Hence, the demand for small area labor market statistics has rapidly increased over the past few years. The Labour Force Survey (LFS) conducted by the Portuguese Statistical Office is the main source of official statistics on the labour market at the macro level (e.g. NUTS2 and national level). However, the LFS was not designed to produce reliable statistics at the micro level (e.g. NUTS3, municipalities or further disaggregate level) due to small sample sizes. Consequently, traditional design-based estimators are not appropriate. A solution to this problem is to consider model-based estimators that "borrow information" from related areas or past samples by using auxiliary information. This paper reviews, under the model-based approach, Best Linear Unbiased Predictors and an estimator based on the posterior predictive distribution of a Hierarchical Bayesian model. The goal of this paper is to analyze the possibility to produce accurate unemployment rate statistics at micro level from the Portuguese LFS using these kinds of stimators. This paper discusses the advantages of using each approach and the viability of its implementation.
Resumo:
In this study, Artificial Neural Networks are applied to multistep long term solar radiation prediction. The networks are trained as one-step-ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and Auto-regressive with exogenous inputs solar radiationmodels are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images. The input-output structure of the neural network models is selected using evolutionary computation methods.
Resumo:
Despite the importance of larval abundance in determining the recruitment of benthic marine invertebrates and as a major factor in marine benthic community structure, relating planktonic larval abundance with post-settlement post-larvae and juveniles in the benthos is difficult. It is hampered by several methodological difficulties, including sampling frequency, ability to follow larval and post-larval or juvenile cohorts, and ability to calculate growth and mortality rates. In our work, an intensive sampling strategy was used. Larvae in the plankton were collected at weekly intervals, while post-larvae that settled into collectors were analysed fortnightly. Planktonic larval and benthic post-larval/juvenile cohorts were determined, and growth and mortality rates calculated. Integration of all equations allowed the development of a theoretical formulation that, based on the abundance and planktonic larval duration, permits an estimation of the future abundance of post-larvae/juveniles during the first year of benthic life. The model can be applied to a sample in which it was necessary only to measure larval length.
Resumo:
Tese de doutoramento, Engenharia Electrónica e Telecomunicações (Processamento de Sinal), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Thesis (Master's)--University of Washington, 2016-03
Resumo:
BACKGROUND: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. METHODS: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. RESULTS: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. CONCLUSIONS: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
Resumo:
Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.
Resumo:
Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
Os Líquidos Iónicos (LIs) são sais orgânicos constituídos exclusivamente por iões e possuem pontos de fusão inferiores a 100ºC. As suas propriedades únicas e o facto de ser possível ajustar as suas propriedades físicas, químicas e biológicas, de acordo com o objetivo pretendido, tornam esta classe de compostos, um grande objeto de estudo de inúmeros investigadores. Desde os inícios da sua aplicação até à atualidade, a investigação nesta área expandiu o seu raio de ação, estando já descrito o seu potencial como agentes antimicrobianos e, mais recentemente, como compostos farmacêuticos ativos. Atualmente muitas das suas aplicações são baseadas nas suas propriedades biológicas. Esta Tese teve como objetivo avaliar a influência que os LIs podem exercer a nível do crescimento bacteriano e estudar alternativas de combater a resistência bacteriana. Todos os LIs utilizados neste trabalho tinham como anião o ácido valpróico, sendo utilizados catiões orgânicos de amónio e de imidazólio. Foram utilizadas 4 bactérias e avaliou-se a atividade biológica e a respetiva taxa de crescimento. O estudo da sua atividade biológica foi feito através da determinação da Concentração Mínima Inibitória (CMI) e a análise das suas curvas de crescimentos na presença e ausência de composto. Com este trabalho foi possível verificar que dentro dos compostos em estudo, LIs derivados do valproato, o Valproato com o cetilperidínio [valp] [cetylpir] foi o que influenciou o crescimento de todas as bactérias estudadas. Este estudo demonstrou o potencial antibacteriano de alguns compostos, podendo desta forma vir a ser utilizados para fins farmacêuticos
Resumo:
Background: Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. Methods: A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score >= 8 in men and >= 5 in women. Results: 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). Conclusions: The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.
Resumo:
In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.