942 resultados para Mucosal transmission
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
The objective of this paper is to present a methodology to analyze a transmission line model used in electromagnetic transitory simulators, called equivalent impedance test. Initially the definition of equivalent impedance reference test is shown. Soon after this methodology is applied to a transmission line model, the Quasi-Modes model. The studies were accomplished in a hypothetical non-transposed three-phase transmission fine of 440 kV. The line length is 500 km, and it was modeled through cascades of pi-circuits (with 50 pi's circuits, each with 10 km length).
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a Parallel Simulated Annealing, PSA, algorithm for solving the long term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the Sequential Simulated Annealing algorithm have been implementeded and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network, and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the Parallel Simulated Annealing algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.
Resumo:
An analysis of the performance of six major methods of loss allocation for generators and demands was conducted, based on pro-rata (two), on incremental factors (two), on proportional sharing (PS) (one), and on electric circuit theory (one). Using relatively simple examples which can easily be checked, the advantages and disadvantages of each were ascertained and the results confirmed using a larger sample system (IEEE-118). The discussion considers the location and size of generators and demands, as well as the merits of the location of these agents for each configuration based on an analysis of the effect of various network modifications. Furthermore, an application in the South-Southeastern Brazilian Systems is performed. Conclusions and recommendations are presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Initially this paper shows the ground wire reduction process for generic multiphase transmission lines and after, the ground wire reduction process for a specilic 440-kV three-phase overhead transmission line. Following this, the influence of the ground wire reduction process considering two situations is shown: first, considering frequency independence and second, when these parameters are considered as frequency dependent. This paper presents analytical results for generic multiphase transmission lines. For a specific 440-kV three-phase overhead transmission line, analytical and graphic results are shown considering real data for every frequency between 10 Hz and 1 MHz.
Resumo:
The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
The objective of this paper is to show an alternative methodology to calculate transmission-line parameters per unit length. With this methodology, the transmission-line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency-dependent transmission-line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency-dependent transmission-line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a two-phase and a three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulations results for a typical frequency spectrum of switching transients (10 Hz to 10 kHz).
Resumo:
The data of four networks that can be used in carrying out comparative studies with methods for transmission network expansion planning are given. These networks are of various types and different levels of complexity. The main mathematical formulations used in transmission expansion studies-transportation models, hybrid models, DC power flow models, and disjunctive models are also summarised and compared. The main algorithm families are reviewed-both analytical, combinatorial and heuristic approaches. Optimal solutions are not yet known for some of the four networks when more accurate models (e.g. The DC model) are used to represent the power flow equations-the state of the art with regard to this is also summarised. This should serve as a challenge to authors searching for new, more efficient methods.
Resumo:
In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. Based on previous analyses, it is used the reasonable number of p circuits and the number of blocks composed by parallel resistor and inductor for reduction of numerical oscillations. It is analyzed the influence of the increase of the RL parallel blocks in the obtained results. The RL parallel blocks are used for inclusion of the frequency influence in the transmission line longitudinal parameter. It is a simple model that is been used by undergraduate students for simulation of traveling wave phenomena in transmission lines. Considering the model without frequency influence, it is included a representation of the corona effect. Some simulations are carried considering the corona effect and they are compared to the results without this phenomenon.
Resumo:
The correction procedure for Clarke's matrix, considering three-phase transmission line analyzes, is analyzed step by step in this paper, searching to improve the application of this procedure. Changing the eigenvectors as modal transformation matrices, Clarke's matrix has been applied to analyses for transposed and untransposed three-phase transmission line cases. It is based on the fact that Clarke's matrix is an eigenvector matrix for transposed three-phase transmission lines considering symmetrical and asymmetrical cases. Because of this, the application of this matrix has been analyzed considering untransposed three-phase transmission lines. In most of these cases, the errors related to the eigenvalues can be considered negligible. It is not true when it is analyzed the elements that are not in main diagonal of the quasi-mode matrix. This matrix is obtained from the application of Clarke's matrix. The quasi-mode matrix is correspondent to the eigenvalue matrix. Their off-diagonal elements represent couplings among the quasi-modes. So, the off-diagonal quasi-mode element relative values are not negligible when compared to the eigenvalues that correspond to the coupled quasi-modes. Minimizing these relative values, the correction procedure is analyzed in detail, checking some alternatives for the correction procedure application.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)