947 resultados para Motion pictures.
Resumo:
The flexibility of the robot is the key to its success as a viable aid to production. Flexibility of a robot can be explained in two directions. The first is to increase the physical generality of the robot such that it can be easily reconfigured to handle a wide variety of tasks. The second direction is to increase the ability of the robot to interact with its environment such that tasks can still be successfully completed in the presence of uncertainties. The use of articulated hands are capable of adapting to a wide variety of grasp shapes, hence reducing the need for special tooling. The availability of low mass, high bandwidth points close to the manipulated object also offers significant improvements I the control of fine motions. This thesis provides a framework for using articulated hands to perform local manipulation of objects. N particular, it addresses the issues in effecting compliant motions of objects in Cartesian space. The Stanford/JPL hand is used as an example to illustrate a number of concepts. The examples provide a unified methodology for controlling articulated hands grasping with point contacts. We also present a high-level hand programming system based on the methodologies developed in this thesis. Compliant motion of grasped objects and dexterous manipulations can be easily described in the LISP-based hand programming language.
Resumo:
A new formulation for recovering the structure and motion parameters of a moving patch using both motion and shading information is presented. It is based on a new differential constraint equation (FICE) that links the spatiotemporal gradients of irradiance to the motion and structure parameters and the temporal variations of the surface shading. The FICE separates the contribution to the irradiance spatiotemporal gradients of the gradients due to texture from those due to shading and allows the FICE to be used for textured and textureless surface. The new approach, combining motion and shading information, leads directly to two different contributions: it can compensate for the effects of shading variations in recovering the shape and motion; and it can exploit the shading/illumination effects to recover motion and shape when they cannot be recovered without it. The FICE formulation is also extended to multiple frames.
Resumo:
In many motion-vision scenarios, a camera (mounted on a moving vehicle) takes images of an environment to find the "motion'' and shape. We introduce a direct-method called fixation for solving this motion-vision problem in its general case. Fixation uses neither feature-correspondence nor optical-flow. Instead, spatio-temporal brightness gradients are used directly. In contrast to previous direct methods, fixation does not restrict the motion or the environment. Moreover, fixation method neither requires tracked images as its input nor uses mechanical tracking for obtaining fixated images. The experimental results on real images are presented and the implementation issues and techniques are discussed.
Resumo:
This report presents a set of representations methodologies and tools for the purpose of visualizing, analyzing and designing functional shapes in terms of constraints on motion. The core of the research is an interactive computational environment that provides an explicit visual representation of motion constraints produced by shape interactions, and a series of tools that allow for the manipulation of motion constraints and their underlying shapes for the purpose of design.
Resumo:
This paper presents an image-based rendering system using algebraic relations between different views of an object. The system uses pictures of an object taken from known positions. Given three such images it can generate "virtual'' ones as the object would look from any position near the ones that the two input images were taken from. The extrapolation from the example images can be up to about 60 degrees of rotation. The system is based on the trilinear constraints that bind any three view so fan object. As a side result, we propose two new methods for camera calibration. We developed and used one of them. We implemented the system and tested it on real images of objects and faces. We also show experimentally that even when only two images taken from unknown positions are given, the system can be used to render the object from other view points as long as we have a good estimate of the internal parameters of the camera used and we are able to find good correspondence between the example images. In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.
Resumo:
The processes underlying the perceptual analysis of visual form are believed to have minimal interaction with those subserving the perception of visual motion (Livingstone and Hubel, 1987; Victor and Conte, 1990). Recent reports of functionally and anatomically segregated parallel streams in the primate visual cortex seem to support this hypothesis (Ungerlieder and Mishkin, 1982; VanEssen and Maunsell, 1983; Shipp and Zeki, 1985; Zeki and Shipp, 1988; De Yoe et al., 1994). Here we present perceptual evidence that is at odds with this view and instead suggests strong symmetric interactions between the form and motion processes. In one direction, we show that the introduction of specific static figural elements, say 'F', in a simple motion sequence biases an observer to perceive a particular motion field, say 'M'. In the reverse direction, the imposition of the same motion field 'M' on the original sequence leads the observer to perceive illusory static figural elements 'F'. A specific implication of these findings concerns the possible existence of (what we call) motion end-stopped units in the primate visual system. Such units might constitute part of a mechanism for signalling subjective occluding contours based on motion-field discontinuities.
Resumo:
In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions.
Resumo:
The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
A common problem in video surveys in very shallow waters is the presence of strong light fluctuations, due to sun light refraction. Refracted sunlight casts fast moving patterns, which can significantly degrade the quality of the acquired data. Motivated by the growing need to improve the quality of shallow water imagery, we propose a method to remove sunlight patterns in video sequences. The method exploits the fact that video sequences allow several observations of the same area of the sea floor, over time. It is based on computing the image difference between a given reference frame and the temporal median of a registered set of neighboring images. A key observation is that this difference will have two components with separable spectral content. One is related to the illumination field (lower spatial frequencies) and the other to the registration error (higher frequencies). The illumination field, recovered by lowpass filtering, is used to correct the reference image. In addition to removing the sunflickering patterns, an important advantage of the approach is the ability to preserve the sharpness in corrected image, even in the presence of registration inaccuracies. The effectiveness of the method is illustrated in image sets acquired under strong camera motion containing non-rigid benthic structures. The results testify the good performance and generality of the approach
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation