991 resultados para Mota, Marcus
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos, baseados na teoria clássica das placas, desenvolvido para a análise de controlo activo em dinâmica de estruturas de tipo placa/casca integrando sensores e actuadores piezoeléctricos. O controlo é iniciado através de uma optimização prévia do núcleo laminado de modo a diminuir a amplitude da vibração. É usado um algoritmo de controlo baseado na ligação entre as lâminas piezoeléctricas sensoras e actuadoras para obter um mecanismo de controlo da resposta dinâmica da estrutura. A resolução por elementos finitos usa um elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. Apresentam-se os resultados obtidos em dois exemplos ilustrativos.
Resumo:
Neste trabalho é feita a optimização de estruturas laminadas do tipo placa-casca, construídas por materiais compósitos, fazendo-se uso de um modelo discreto baseado na Teoria de Kirchhoff em conjugação com a Teoria da Camada Única Equivalente.As análises estrutural e de sensibilidades de estruturas em regime estático com comportamento geometricamente não linear, em vibrações livres, e em estabilidade linear, são desenvolvidas para um elemento finito triangular plano de 3 nós, com 18 graus de liberdade. A optimização é feita considerando diferentes funções objectivo, tais como a maximização da energia elástica de deformação, a maximização da frequência fundamental e a maximização da carga crítica, e é baseada no método das sensibilidades. As sensibilidades destas funções objectivo em ordem ás variáveis de projeto são calculadas analíticamente, sendo a orientação das fibras as variáveis de projecto consideradas.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos, baseado na teoria clássica de placas, para a análise linear e não-linear de estruturas do tipo placa/casca integrando sensores e actuadores piezoeléctricos. É usado um simples e eficiente elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. É utilizada a formulação Lagrangeana actualizada associada à tecnica de Newton - Raphson para a solução iterativa das equações de equilibrio .O modelo pode ser aplicado a cascas piezolaminadas com geometria e carregamento arbitrários. Apresentam-se vários exemplos ilustrativos cujos resultados mostram a eficiencia do modelo proposto.
Resumo:
A non-conforming three-node triangular finite element with 18 degree of freedom, is used in conjugation with the Kirchhoff theory for the non-linear analysis of thin composite plate-shell structure. The formulation of the geometrically non-linear analysis is based on an updated Lagrangian formulation associated with the Newton-Raphson iterative technique, which incorporates an automatic arc-length control procedure.
Resumo:
This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.
Resumo:
This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.
Resumo:
Composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.
Resumo:
A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
Resumo:
In the recent years the study of smart structures has attracted significant researchers, due to their potential benefits in a wide range of applications, such as shape control, vibration suppression, noise attenuation and damage detection. The applications in aerospace industry are of great relevance, such as in active control of airplane wings, helicopter blade rotor, space antenna. The use of smart materials, such as piezoelectric materials, in the form of layers or patches embedded and/or surface bonded on laminated composite structures, can provide structures that combine the superior mechanical properties of composite materials and the capability to sense and adapt their static and dynamic response, becoming adaptive structures. The piezoelectric materials have the property of generate electrical charge under mechanical load or deformation, and the reverse, applying an electrical field to the material results in mechanical strain or stresses.
Resumo:
This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
Neste trabalho apresenta-se um modelo de elementos finitos baseado na teoria de deformação de corte de 3ª ordem, o qual é aplicado ao controlo activo de vibrações, incluindo o fenómeno de ressonância, em estruturas laminadas. Sensores e actuadores piezoeléctricos na forma de lâminas estão colocadas na superfície superior e inferior do laminado, permitindo assim um sistema de controlo, ligando os efeitos piézoeléctricos directo e converso, atrvés de um algoritmo baseado na realimentação com velocidade negativa. As estruturas são forçadas a vibrar num determinado modo, e a sua amplitude no tempo é calculada usando o método de Newmark. Apresenta-se uma aplicação ilustrativa.
Resumo:
Dissertação de mest., Biologia Marinha, Faculdade de Ciências do Mar e Ambiente, Univ. do Algarve, 2008
Resumo:
Dissertação de mest., Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
Dissertação de mest., Tecnologia de Alimentos, Instituto Superior de Engenharia, Univ. do Algarve, 2013