979 resultados para Mode choice.
Resumo:
We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 μm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses. © 2003 Optical Society of America.
Resumo:
A detailed study of the design issues relevant to long-wavelength monolithic mode-locked lasers is presented. Following a detailed review of the field, we have devised a validated travelling wave model to explore the limits of mode-locking in monolithic laser diodes, not only in terms of pulse duration and repetition rate, but also in terms of stability. It is shown that fast absorber recovery is crucial for short pulse width, that the ratio of gain to absorption saturation is key in accessing ultrashort pulses and that low alpha factors give only modest benefit. Finally, optimized contact layouts are shown to greatly enhance pulse stability and the overall operational success. The design rules show high levels of consistency with published experimental data.
Resumo:
We demonstrate a controllable formation process of wave-like patterns in thermally unstable surface-capped polymer films on a rigid substrate. Self-ordered wave-like structures over a large area can be created by applying a small lateral tension to the film, whereupon it becomes unstable. A clear mode selection process which includes creation, decay and interference between coexisting waves at different annealing conditions has been observed, which makes it possible to restrain the patterns which are formed finally. Our results provide a clear and new evidence of spinodal behaviour in such a film due to thermal instability. Furthermore, we show that the well-controlled patterns generated in such a process can be used to fabricate nanostructures for various applications.
Resumo:
We report the amplification of 10-100-pJ semiconductor diode pulses to an energy of 158 microJ and peak powers >100 kW in a multistage fiber amplifier chain based on a single-mode, large-mode-area erbium-doped amplifier design. To our knowledge these results represent the highest single-mode pulse energy extracted from any doped-fiber system.
Resumo:
Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.