972 resultados para Metamorphic Buffer
Resumo:
This paper presents a practical destruction-free parameter extraction methodology for a new physics-based circuit simulator buffer-layer Integrated Gate Commutated Thyristor (IGCT) model. Most key parameters needed for this model can be extracted by one simple clamped inductive-load switching experiment. To validate this extraction method, a clamped inductive load switching experiment was performed, and corresponding simulations were carried out by employing the IGCT model with parameters extracted through the presented methodology. Good agreement has been obtained between the experimental data and simulation results.
Resumo:
The development of the optomotor reaction (OMR) in milkfish (Chanos chanos), from the larval, through the metamorphic, to the juvenile stage was observed. The period from the appearance of the pelvic fins until the complete disappearance of the finfold was named ”metamorphic stage”. While the larvae showed strong rheotactic responses, their OMR was somewhat weak. It was clear that the OMR underwent a big change through the metamorphic stage, and became strong and almost perfect in the juveniles.
Resumo:
The paper discusses the impacts of shrimp culture to the environment in some countries in Asia. Specifically, it highlights the land requirements suitable for shrimp farming and the impacts of shrimp culture on mangroves. The positive effects of mangroves such as its filtering capacity and as a protective buffer are also discussed.
Resumo:
Moon oxygenases related to cytochrome P450s are the molecular Biomarkers which have important role in Biotransformation of endogenous and exogenous compounds and catalazyin of many biological reactions. One of the important isoenzyme is cytochrome P4501A. This isoenzyme involved in metabolism of environment pollutnts such as PAHs. Because of its inducibility, it has a key tool for impact assesment of contaminants in aquatic environment. In this study, at first, that fractions containing Acipenser persicus and Huso huso isoenzyme were purified, and after that Antibodies against them were prepared. For isolation of isoenzyme fraction, Microsomes were prepared from fish liver using differential centrifugation at high speeds. microsomes were solubiized by cholat sodium and Emulgen. Extraction of this isoenzyme was done with the combinatuion of ionexchange chromatography and gelfiltration or chromatofocusing chromatography. Ion exchange chromatography and gel filtration were applied in DEAE sepharose fast flow and sephacryl S200 respectively and chromatofocusing was done at poly buffer 74 and 94 exchanger. The results of SDS-PAGE Showed that the molecular weight of isoenzyme was about 58±1 KDa. Furthermore the inmunoblotting results confirmed this subject. Isoenzyme activigy based on EROD (Ethoxyresorofin o-deethylase) reaction showed about 20-26 fold increase in enzyme activity of treated fish than control fish. The results of Elisa, Using monoclonal anti cod P4501A demonstrated the inducibility and highly elevated of its activity in treated sample more than the control fish. Mean while, the fish sample were showed the strong reaction to polyclonal antibody against beluga P4501A1 prepared in our Lab compared to monoclonal anti body.
Resumo:
An outline is given of various environment-friendly management practices in aquaculture, considering the following: 1) feed right; 2) avoid antibiotics; 3) reuse and cycle water; 4) use settling or sedimentation ponds; 5) provide mangrove buffer zone; and, 6) practice polyculture or integrated farming.
Resumo:
Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracillis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
The development of infant Macaca thibetana was studied at Mount Emei, China, and compared to that of other macaque species. It was found that there are many common features in the process of infant socialization in species of the genus Macaca: mothers play an important and active role, other group members influence the infants' development to a greater or lesser extent and play is a major activity in the life of infants. Some differences were found to exist, however, between macaque species. These included differences in maternal care behaviour such as 'len', leaving time and weaning time. Paternal behaviours were also found to vary within and among species. Tibetan macaque males care for infants extensively, and they may use infants as an agonistic buffer. The natural and social environment may also influence differences between macaque species in infant development.
Resumo:
The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary. Here we show that stable, long adaptive simulations can be carried out using density functional theory with the BLYP exchange-correlation functional for the QM model and a flexible TIP3P force field for the MM model without requiring adjustments of either. Using a primary benchmark system of pure water, we investigate the convergence of the liquid structure with the size of the QM region, and demonstrate that by using a sufficiently large QM region (with radius 6 Å) it is possible to obtain radial and angular distributions that, in the QM region, match the results of fully quantum mechanical calculations with periodic boundary conditions, and, after a smooth transition, also agree with fully MM calculations in the MM region. The key ingredient is the accurate evaluation of forces in the QM subsystem which we achieve by including an extended buffer region in the QM calculations. We also show that our buffered-force QM/MM scheme is transferable by simulating the solvated Cl(-) ion.
Resumo:
Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.
Resumo:
Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
We report on the preparation conditions of YBa2Cu3O7 polycrystalline superconducting tapes by a sol-gel deposition technique. We present some discussion on the compatibility between the nature of the substrate, the use of a buffer layer, and the conditions used to prepare appropriate superconducting YBa2Cu3O7 materials. We report also on the microstructural characterizations performed in order to evaluate the crystallites size, degree of orientation and connectivity. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.
Resumo:
Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.
Resumo:
We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.
Resumo:
GaAs nanowires were grown on Si (111) substrates. By coating a thin GaAs buffer layer on Si surface and using a two-temperature growth, the morphology and crystal structure of GaAs nanowires were dramatically improved. The strained GaAs/GaP core-shell nanowires, based on the improved GaAs nanowires with a shell thickness of 25 nm, showed a significant shift in emission energy of 260 meV from the unstrained GaAs nanowires. © 2010 IEEE.