963 resultados para Metal-insulator (MI) phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform a study of the energetics of KH2PO4 (KDP) by using a shell model (SM) which was constructed by adjusting the interaction parameters to ab initio calculations, and was fitted to reproduce phonons, polarization-inversion energies and structural properties. We calculate the energy profiles by performing global displacements and local distortions following the ferroelectric (FE) mode pattern in clusters of different sizes embedded in a paraelectric (PE) phase matrix. These properties are expected to be relevant to the PE-FE phase transition. The obtained SM results are compared to corresponding ab initio (AI) data. The global instabilities are found in good agreement for both KDP and DKDP. We also find qualitative good agreement in the KDP structure and even quantitative agreement in the expanded DKDP structure for the local distortions. The SM results reproduce well different trends like increasing instabilities as the cluster sizes grows, as the heavier atoms are included, and as the volume is increased, in accordance with the corresponding data from AI calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background BRCA1 and cyclin D1 are both essential for normal breast development and mutation or aberration of their expression is associated with breast cancer [1,2]. Cyclin D1 is best known as a G1 cyclin where it regulates the G1 to S phase transition by acting as a rate-limiting subunit of CDK4/6 kinase activity. More recently, however, Stacey has demonstrated that cyclin D1 levels in G2/M determine whether a cell continues to proliferate or exits the cell cycle [3]. The majority of BRCA1 in the cell is bound to BARD1 through their N-terminal RING domains. Heterodimerization is essential for the stability and correct localization of the complex and confers ubiquitin ligase activity to BRCA1. The importance of the ligase activity of BRCA1 to breast cancer development is inferred from the fact that N-terminal diseaseassociated mutations are proposed to reduce ligase activity [4]. Methods Protein–protein interactions were demonstrated using yeast-two-hybrid and coimmunoprecipitation. Protein levels were altered through overexpression, siRNA and antisense technology. The effect of proteasome inhibitors and cycloheximide treatment was also examined. Results We initially identified cyclin D1 as a binding partner of BARD1 in a yeast-two-hybrid screen and defined the minimal binding region as the N-terminus of BARD1. This interaction was confirmed in vivo by coimmunoprecipitation. The N-terminus of BARD1 also binds BRCA1 and imparts ubiquitin ligase activity to the complex. Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Traditionally polyubiquitin chains linked through lysine 48 target proteins for degradation by the 26 S proteasome. We have demonstrated that cyclin D1 protein levels are inversely related to BRCA1 and BARD1 levels in several model systems. Furthermore, regulation of cyclin D1 levels occurs through a post-transcriptional mechanism and requires the ligase activity of BRCA1. Interestingly, this phenomenon is cell-cycle regulated, occurring in G2/M. Conclusion We propose that cyclin D1 is a potential substrate for BRCA1 ubiquitination and that this targets cyclin D1 for proteasomal-mediated degradation. Future work will focus on ascertaining the functional consequence of cyclin D1 regulation by the BRCA1–BARD1 complex; in particular, the impact of BRCA1, mediated through regulation of cyclin D1, on the proliferation versus differentiation decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonequilibrium dynamics of an ion chain in a highly anisotropic trap is studied when the transverse trap frequency is quenched across the value at which the chain undergoes a continuous phase transition from a linear to a zigzag structure. Within Landau theory, an equation for the order parameter, corresponding to the transverse size of the zigzag structure, is determined when the vibrational motion is damped via laser cooling. The number of structural defects produced during a linear quench of the transverse trapping frequency is predicted and verified numerically. It is shown to obey the scaling predicted by the Kibble-Zurek mechanism, when extended to take into account the spatial inhomogeneities of the ion chain in a linear Paul trap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultracold polar molecules, in highly anisotropic traps and interacting via a repulsive dipolar potential, may form one-dimensional chains at high densities. According to classical theory, at low temperatures there exists a critical value of the density at which a second-order phase transition from a linear to a zigzag chain occurs. We study the effect of thermal and quantum fluctuations on these self-organized structures using classical and quantum Monte Carlo methods, by means of which we evaluate the pair correlation function and the static structure factor. Depending on the parameters, these functions exhibit properties typical of a crystalline or of a liquid system. We compare the thermal and the quantum results, identifying analogies and differences. Finally, we discuss experimental parameter regimes where the effects of quantum fluctuations on the linear-zigzag transition can be observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the statistical properties of a Coulomb crystal can be measured by means of a standard interferometric procedure performed on the spin of one ion in the chain. The ion spin, constituted by two internal levels of the ion, couples to the crystal modes via spatial displacement induced by photon absorption. The loss of contrast in the interferometric signal allows one to measure the autocorrelation function of the crystal observables. Close to the critical point, where the chain undergoes a second-order phase transition to a zigzag structure, the signal gives the behavior of the correlation function at the critical point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of coal with CO2 at pressures of up to 30 bar concerning mechanisms of diffusion, the strength of interactions, and the irreversibility of uptake for the permanent disposal of CO2 into coal fields have been studied. Differential scanning calorimetry was used to investigate coal/CO2 interactions for North Dakota, Wyodak, Illinois No. 6, and Pittsburgh No. 8 coals. It was found that the first interactions of CO2 with coals led to strongly bound carbon dioxide on coal. Energy values attributed to the irreversible storage capacity for CO2 on coals were determined. The lowest irreversible sorption energy was found for North Dakota coal (0.44 J/g), and the highest value was for the Illinois No. 6 coal (8.93 J/g). The effect of high-pressure CO2 on the macromolecular structure of coal was also studied by means of differential scanning calorimetry. It was found that the temperature of the second-order phase transition of Wyodak coal decreases with an increase in CO2 pressure significantly, indicating that high-pressure CO2 diffuses through the coal matrix, causes significant plasticization effects, and changes the macromolecular structure of the Wyodak coal. Desorption characteristics of CO2 from the Pittsburgh No. 8 coal were studied by temperature-programmed desorption mass spectrometry. It was found that CO2 desorption from the coal is an activated process and follows a first-order kinetic model. The activation energy for CO2 desorption from the Pittsburgh No. 8 coal increased with the preadsorbed CO2 pressure, indicating that CO2 binds more strongly and demands more energy to desorb from the Pittsburgh No. 8 coal at higher pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the entanglement spectrum near criticality in finite quantum spin chains. Using finite size scaling we show that when approaching a quantum phase transition, the Schmidt gap, i.e., the difference between the two largest eigenvalues of the reduced density matrix ?1, ?2, signals the critical point and scales with universal critical exponents related to the relevant operators of the corresponding perturbed conformal field theory describing the critical point. Such scaling behavior allows us to identify explicitly the Schmidt gap as a local order parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the backflow of information in a system with a second-order structural phase transition, namely, a quasi-one-dimensional Coulomb crystal. Using standard Ramsey interferometry which couples a target ion (the system) to the rest of the chain (a phononic environment), we study the non-Markovian character of the resulting open system dynamics. We study two different time scales and show that the backflow of information pinpoints both the phase transition and different dynamical features of the chain as it approaches criticality. We also establish an exact link between the backflow of information and the Ramsey fringe visibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface modification of thin aluminium films is both produced and characterised by exciting surface plasmon polaritons in an attenuated total reflection geometry: silica prism/aluminium/aluminium oxide system. The modification is performed, under ambient conditions, by exposure to a low fluence (