975 resultados para Material fatigue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The improved mechanical properties of surface nano-crystallized graded materials produced by surface severe plastic deformation ((SPD)-P-2) are generally owing to the effects of the refined structure, work-hardened region and compressive residual stress. However, during the (SPD)-P-2 process, residual stress is produced simultaneously with work-hardened region, the individual contribution of these two factors to the improved mechanical properties remains unclear. Numerical simulations are carried out in order to answer this question. It is found that work hardening predominates in improving the yield strength and the ultimate tensile strength of the surface nano-crystallized graded materials, while the influence of the residual stress mainly emerges at the initial stage of deformation and decreases the apparent elastic modulus of the surface nano-crystallized graded materials, which agrees well with the experimental results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remains a constant, where E-0 is a referenced Young's modulus, k is the gradient exponent and c(0) is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a serial of Bi3.4Yb0.6Ti3-xVxO12 (BYTV) thin film with different V5+ contents were deposited on Pt/Ti/SiO2/Si substrates by chemical solution deposition (CSD). The crystallized phase and electrical properties of the films were investigated using X-ray diffraction, polarization hysteresis loops, leakage current-voltage, and fatigue test. From our experimental results, it can be found that the ferroelectric properties can be improved greatly using V5+-doped in Bi3.4Yb0.6Ti3O12 (BYT) thin film, compared with the reported BYT thin film. The remanent polarization was enhanced and excellent leakage current characteristic with 10(-11)A at the bias voltage of 4V, which is much lower than the BYT thin film or some reported bismuth layer-structure ferroelectric films. Fatigue test shows that the fabricated films have good anti-fatigue characteristic after 10(10) switching cycles. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For heat energy storage application, polyurea. microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene- 2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FT-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA. Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed. Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250 degreesC, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For thermal energy storage application, polyurea microcapsules about 2.5 mum in diameter containing phase change material were prepared using interfacial polycondensation method. In the system droplets in microns are first formed by emulsifying an organic phase consisting of a core material ( n-hexadecane) and an oil-soluble reactive monomer, toluene-2, 4-diisocyanate (TDI), in an aqueous phase. By adding water-soluble reactive monomer, diamine, monomers TDI and diamine react with each other at the interface of micelles to become a shell. Ethylenediamine (EDA), 1, 6-hexane diamine (HDA) and their mixture were employed as water-soluble reactive monomers. The effects of diamine type on chemical structure and thermal properties of the microcapsules were investigated by FT-IR and thermal analysis respectively. The infrared spectra indicate that polyurea microcapsules have been successfully synthesized; all the TG thermographs show microcapsules containing n-hexadecane can sustain high temperature about 300 degreesC without broken and the DSC measurements display that all samples possess a moderate heat of phase transition; thermal cyclic tests show that the encapsulated paraffin kept its energy storage capacity even after 50 cycles of operation. The results obtained from experiments show that the encapsulated n-hexadecane possesses a good potential as a thermal energy storage material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide . The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined. The DOC content and the UV-abs. of the water decreased substantially during treatment with. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and waters, respectively. No mutagenic activity was generated by the UV irradiation or the treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

City Univ Hong Kong