960 resultados para Mammalian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus oocytes.DESCRIPTION:In order to facilitate the identification of genes possessing clusters of repeats that regulate post-transcriptional aspects of gene expression in mammalian genes, we used REPFIND to create a database of all repeated motifs in the 3' untranslated regions (UTR) of genes from the Mammalian Gene Collection (MGC). The MGC database includes seven vertebrate species: human, cow, rat, mouse and three non-mammalian vertebrate species. A web-based application was developed to search this database of repeated motifs to generate species-specific lists of genes containing specific classes of repeats in their 3'-UTRs. This computational tool is called 3'-UTR SIRF (Short Interspersed Repeat Finder), and it reveals that hundreds of human genes contain an abundance of short CAC-rich and CAG-rich repeats in their 3'-UTRs that are similar to those found in mRNAs localized to the neurites of neurons. We tested four candidate mRNAs for localization in rat hippocampal neurons by in situ hybridization. Our results show that two candidate CAC-rich (Syntaxin 1B and Tubulin beta4) and two candidate CAG-rich (Sec61alpha and Syntaxin 1A) mRNAs are localized to distal neurites, whereas two control mRNAs lacking repeated motifs in their 3'-UTR remain primarily in the cell body.CONCLUSION:Computational data generated with 3'-UTR SIRF indicate that hundreds of mammalian genes have an abundance of short CA-containing motifs that may direct mRNA localization in neurons. In situ hybridization shows that four candidate mRNAs are localized to distal neurites of cultured hippocampal neurons. These data suggest that short CA-containing motifs may be part of a widely utilized genetic code that regulates mRNA localization in vertebrate cells. The use of 3'-UTR SIRF to search for new classes of motifs that regulate other aspects of gene expression should yield important information in future studies addressing cis-regulatory information located in 3'-UTRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper attempts a rational, step-by-step reconstruction of many aspects of the mammalian neural circuitry known to be involved in the spinal cord's regulation of opposing muscles acting on skeletal segments. Mathematical analyses and local circuit simulations based on neural membrane equations are used to clarify the behavioral function of five fundamental cell types, their complex connectivities, and their physiological actions. These cell types are: α-MNs, γ-MNs, IaINs, IbINs, and Renshaw cells. It is shown that many of the complexities of spinal circuitry are necessary to ensure near invariant realization of motor intentions when descending signals of two basic types independently vary over large ranges of magnitude and rate of change. Because these two types of signal afford independent control, or Factorization, of muscle LEngth and muscle TEnsion, our construction was named the FLETE model (Bullock and Grossberg, 1988b, 1989). The present paper significantly extends the range of experimental data encompassed by this evolving model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yersiniosis is an acute or chronic enteric zoonosis caused by enteropathogenic Yersinia species. Although yersiniosis is predominantly associated with gastroenteric forms of infection, extraintestinal forms are often reported from the elderly or patients with predisposing factors. Yersiniosis is often reported in countries with cold and mild climates (Northern and Central Europe, New Zealand and North of Russian Federation). The Irish Health Protection Surveillance Centre (HPSC) currently records only 3-7 notified cases of yersiniosis per year. At the same time pathogenic Yersinia enterocolitica is recovered from pigs (main source of pathogenic Y. enterocolitica) at the levels similar to that observed in Yersinia endemic countries. Introduction of Yersinia selective culture procedures may increase Yersinia isolation rates. To establish whether the small number of notifications of human disease was an underestimate due to lack of specific selective culture for Yersinia we carried out a prospective culture study of faecal samples from outpatients with diarrhoea, with additional culture of appendix and throat swabs. Higher levels of anti-Yersinia seroprevalence than yersiniosis notification rates in endemic countries suggests that most yersiniosis cases are unrecognised by culture. Subsequently, in addition to a prospective culture study of clinical specimens, we carried out serological screening of Irish blood donors and environmental screening of human sewage. Pathogenic Yersinia strains were not isolated from 1,189 faeces samples, nor from 297 throat swabs, or 23 appendix swabs. This suggested that current low notification rates in Ireland are not due to the lack of specific Yersinia culture procedures. Molecular screening detected a wider variety of Y. enterocolitica-specific targets in pig slurry than in human sewage. A serological survey for antibodies against Yersinia YOP (Yersinia Outer Proteins) proteins in Irish blood donors found antibodies in 25%, with an age-related trend to increased seropositivity, compatible with the hypothesis that yersiniosis may have been more prevalent in Ireland in the recent past. Y. enterocolitica is a heterogeneous group of microorganisms that comprises strains with different degree of pathogenicity. Although non-pathogenic Y. enterocolitica lack conventional virulence factors, these strains can be isolated from patients with diarrhoea. Insecticidal Toxin Complex (ITC) and Cytolethal Distending Toxins can potentially contribute to the virulence of non-pathogenic Y. enterocolitica in the absence of other virulence factors. We compared distribution of ITC and CDT loci among pathogenic and non-pathogenic Y. enterocolitica. Additionally, to demonstrate potential pathogenicity of non-pathogenic Y. enterocolitica we compared their virulence towards Galleria mellonella larvae (a non-mammalian model of human bacterial infections) with the virulence of highly and mildly pathogenic Y. enterocolitica strains. Surprisingly, virulence of pathogenic and non-pathogenic Y. enterocolitica in Galleria mellonella larvae observed at 37°C did not correlate with their pathogenic potential towards humans. Comparative phylogenomic analysis detects predicted coding sequences (CDSs) that define host-pathogen interactions and hence providing insights into molecular evolution of bacterial virulence. Comparative phylogenomic analysis of microarray data generated in Y. enterocolitica strains isolated in the Great Britain from humans with diarrhoea and domestic animals revealed high genetic heterogeneity of these species. Because of the extensive human, animal and food exchanges between the UK and Ireland the objective of this study was to gain further insight into genetic heterogeneity and relationships among clinical and non-clinical Y. enterocolitica strains of various pathogenic potential isolated in Ireland and Great Britain. No evidence of direct transfer of strains between the two countries was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gastrointestinal (GI) tract is colonized by a dense and diverse bacterial community, the commensal microbiota, which plays an important role in the overall health of individuals. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The adaptation of the gut microbiota to our changing life-style is probably the reason for the large inter-individual variation observed among different people. Since the gut microbiota plays an essential role in interactions with host metabolism, it is of utmost importance to explore this relationship. The elderly intestinal microbiota has been the subject of a number of studies in recent years. The results presented in this thesis have further contributed to the expansion of knowledge related to gut microbiota research highlighting the combined effect of culture based and molecular methods as powerful tools for understanding the true impact of microbes. The degree of correlation between measurements from both methods suggested that a single method is capable of profiling intestinal Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae populations. Bacteriocins have shown great promise as alternatives to traditional antibiotics. In this respect, the isolation and characterisation of bacteriocinogenic strains are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine. The selection pressure applied on the bacterial population during antibiotic usage is the driving force for the emergence of antibiotic resistant bacteria. Identification of antibiotic resistant isolates opens up the possibility of using such probiotics to offset the problems caused by antibiotics to the gut microbiota and to improve the intestinal microbial environment. Future work is required to explore the culture collection housing thousands of bacterial isolates as a valuable source of potential probiotics for use for the elderly Irish community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After becoming competent for resuming meiosis, fully developed mammalian oocytes are maintained arrested in prophase I until ovulation is triggered by the luteotropin surge. Meiotic pause has been shown to depend critically on maintenance of cAMP level in the oocyte and was recently attributed to the constitutive Gs (the heterotrimeric GTP-binding protein that activates adenylyl cyclase) signaling activity of the G protein-coupled receptor GPR3. Here we show that mice deficient for Gpr3 are unexpectedly fertile but display progressive reduction in litter size despite stable age-independent alteration of meiotic pause. Detailed analysis of the phenotype confirms premature resumption of meiosis, in vivo, in about one-third of antral follicles from Gpr3-/- females, independently of their age. In contrast, in aging mice, absence of GPR3 leads to severe reduction of fertility, which manifests by production of an increasing number of nondeveloping early embryos upon spontaneous ovulation and massive amounts of fragmented oocytes after superovulation. Severe worsening of the phenotype in older animals points to an additional role of GPR3 related to protection (or rescue) of oocytes from aging. Gpr3-defective mice may constitute a relevant model of premature ovarian failure due to early oocyte aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective - To evaluate the effect of in vitro culture on zona pellucida resistance in mouse oocytes and embryos. Method-Zona pellucida resistance was assessed by comparing duration of zona lysis in the presence of alpha- chymotrypsin. The effects of artificial or physiological conditions of development were evaluated by comparing embryos in vitro with those left to reach the same stage of development in vivo. Results - The time required for zona lysis of oocytes increased after 2, 9.4, and 48 hours in vitro (P < .001). The same observation holds true for oocytes left in vivo during 24 hours. Fertilization both in vivo and in vitro induced a major increase in zona resistance. At the two-cell stage, in vitro culture did not harden the zona pellucida. At the morula stage and beyond, enzymatic lysis was slightly longer in vitro as compared to that of similar stages recovered from the genital tract. Conclusions - Our data indicate that in vitro culture conditions do not modify zona hardening in oocytes and only slightly increased zona resistance from the morula stage on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.