986 resultados para MN IONS DIFFUSION
Resumo:
The pure diffusion process has been often used to study the crystal growth of a binary alloy in the microgravity environment. In the present paper, a geometric parameter, the ratio of the maximum deviation distance of curved solidification and melting interfaces from the plane to the radius of the crystal rod, was adopted as a small parameter, and the analytical solution was obtained based on the perturbation theory. The radial segregation of a diffusion dominated process was obtained for cases of arbitrary Peclet number in a region of finite extension with both a curved solidification interface and a curved melting interface. Two types of boundary conditions at the melting interface were analyzed. Some special cases such as infinite extension in the longitudinal direction and special range of Peclet number were reduced from the general solution and discussed in detail.
Resumo:
Hypersonic viscous flow around a space shuttle with M(infinity) = 7, Re = 148000 and angle of attack alpha = 5-degrees is simulated numerically with the special Jacobian matrix splitting technique and simplified diffusion analogy method. With the simplified diffusion analogy method the efficiency of computation and resolution of the shock can be improved.
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.
Resumo:
Improving the resolution of the shock is one of the most important subjects in computational aerodynamics. In this paper the behaviour of the solutions near the shock is discussed and the reason of the oscillation production is investigated heuristically. According to the differential approximation of the difference scheme the so-called diffusion analogy equation and the diffusion analogy coefficient are defined. Four methods for improving the resolution of the shock are presented using the concept of diffusion analogy.
Resumo:
The ablation rate of a hydrogen isotopic spherical pellet G(is) due to the impact of energetic ions of the respective isotopes and its scaling law are obtained using the transsonic neutral-shielding model, where subscript s might refer to either hydrogen or deuterium. Numerical results show that if E0s/E0e2 greater-than-or-equal-to 1.5, G(is)/G(es) greater-than-or-equal-to 20%, where E0s and E0e are the energy of undisturbed ion and electron, respectively, and G(es) is the ablation rate of a pellet due to the impact of electrons. Hence, under the NBI heating, the effect of the impact of energetic ions on the pellet ablation should be taken into consideration. This result also gives an explanation of the observed enhancement of pellet ablation during NBIH.
Resumo:
radiation incident upon a test cell filled with gaseous SF6 has
Resumo:
采用离子能量为100keV,剂量为3×1016cm-2的离子注入技术,室温下往n型Ge(111)单晶衬底注入Mn+离子,注入后的样品进行400℃热处理。利用X-射线衍射法(XRD)和原子力显微镜(AFM)对注入后的样品进行了结构和形貌分析,俄歇电子能谱法(AES)进行了组分分析,交变梯度样品磁强计(AGM)进行了室温磁性测量。结果表明原位注入样品的结构是非晶的,热处理后发生晶化现象。没有在样品中观察到新相形成。Mn离子较深的注入进Ge衬底,在120nm处Mn原子百分比浓度达到最高为8%。热处理后的样品表现出了室温铁磁特性。
Resumo:
The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.