957 resultados para Lorentz violation
Resumo:
An ED-tether mission to Jupiter is presented. A bare tether carrying cathodic devices at both ends but no power supply, and using no propellant, could move 'freely' among Jupiter's 4 great moons. The tour scheme would have current naturally driven throughout by the motional electric field, the Lorentz force switching direction with current around a 'drag' radius of 160,00 kms, where the speed of the jovian ionosphere equals the speed of a spacecraft in circular orbit. With plasma density and magnetic field decreasing rapidly with distance from Jupiter, drag/thrust would only be operated in the inner plasmasphere, current being near shut off conveniently in orbit by disconnecting cathodes or plugging in a very large resistance; the tether could serve as its own power supply by plugging in an electric load where convenient, with just some reduction in thrust or drag. The periapsis of the spacecraft in a heliocentric transfer orbit from Earth would lie inside the drag sphere; with tether deployed and current on around periapsis, magnetic drag allows Jupiter to capture the spacecraft into an elliptic orbit of high eccentricity. Current would be on at succesive perijove passes and off elsewhere, reducing the eccentricity by lowering the apoapsis progressively to allow visits of the giant moons. In a second phase, current is on around apoapsis outside the drag sphere, rising the periapsis until the full orbit lies outside that sphere. In a third phase, current is on at periapsis, increasing the eccentricity until a last push makes the orbit hyperbolic to escape Jupiter. Dynamical issues such as low gravity-gradient at Jupiter and tether orientation in elliptic orbits of high eccentricity are discussed.
Resumo:
Use of propulsion systems that couple electyrodynamic tethers to ion thrusters, as suggested in the literature, is discussed. The system establishes electrical contact with the ionospheric plasma, at the anodic end of the tether, by ejecting ions instead of collecting electrons; also, the ion thruster adds its thrust to the Lorentz force on the tether. In this paper, we analyze the performance of this coupled system, as measured by the ratio of mission impulse (thrust times mission duration) to the overall system mass, which includes the power subsystem mass, the tether subsystem mass, and the propellant mass consumed in the ion thruster. It is shown that a tether acting by itself, collecting electrons at its anodic end, substantially outperforms the coupled system for times longer than a characteristic time of the ion thruster, for which propellant mass equals the power subsystem mass; for shorter times performances are shown to be similar.
Resumo:
Three separate scenarios of an electrodynamic tether mission at Jupiter following capture of a spacecraft (SC) into an equatorial, highly elliptical orbit around the planet, with perijove at about 1.5 times the Jovian radius, are discussed. Repeated application of Lorentz drag on the spinning tether, at the perijove vicinity, can progressively lower the apojove. One mission involves the tethered-SC rapidly and frequently visiting Galilean moons; elliptical orbits with apojove down at the Ganymede, Europa, and Io orbits are in 2:5, 4:9, and 1:2 resonances with the respective moons. About 20 slow flybys of Io would take place before the accumulated radiation dose exceeds 3 Mrad (Si) at 10 mm Al shield thickness, with a total duration of 5 months after capture (4 months for lowering the apojove to Io and one month for the flybys). The respective number of flybys for Ganymede would be 10 with a total duration of about 9 months. An alternative mission would have the SC acquire a low circular orbit around Jupiter, below the radiation belts, and manoeuvre to get an optimal altitude, with no major radiation effects, in less than 5 months after capture. In a third mission, repeated thrusting at the apojove vicinity, once down at the Io torus, would raise the perijove itself to the torus to acquire a low circular orbit around Io in about 4 months, for a total of 8 months after capture; this corresponds, however, to over 100 apojove passes with an accumulated dose, of about 8.5 Mrad (Si), that poses a critical issue.
Resumo:
Electrodynamic tether thrusters can use the power provided by solar panels to drive a current in the tether and then the Lorentz force to push against the Earth's magnetic field, thereby achieving propulsion without the expenditure of onboard energy sources or propellant. Practical tether propulsion depends critically on being able to extract multiamp electron currents from the ionosphere with relatively short tethers (10 km or less) and reasonably low power. We describe a new anodic design that uses an uninsulated portion of the metallic tether itself to collect electrons. Because of the efficient collection of this type of anode, electrodynamic thrusters for reboost of the International Space Station and for an upper stage capable of orbit raising, lowering, and inclination changes appear to be feasible. Specifically, a 10-km-long bare tether, utilizing 10 kW of the space station power could save most of the propellant required for the station reboost over its 10-year lifetime. The propulsive small expendable deployer system experiment is planned to test the bare-tether design in space in the year 2000 by deploying a 5-km bare aluminum tether from a Delta II upper stage to achieve up to 0.5-N drag thrust, thus deorbiting the stage.
Resumo:
An electrodynamic tether can propel a spacecraft through a planetary magnetized plasma without using propellant. In the classical embodiment of an electrodynamic tether, the ambient magnetic fleld exerts a Lorentz force on the current along the tether, the ambient plasma providing circuit closure for the current A suggested propulsion scheme would hypothetically eliminate tether performance dependence on the plasma density by using a full wire loop to close the current circuit, and a superconductor to shield a loop segment from the external uniform magnetic fleld and cancel the Lorentz force on that segment. Here, we use basic electromagnetic laws to explain how such a scheme cannot produce a net force. Because there is no net current in the superconducting shield, the circulation of the magnetic field along a closed line outside the full cross section, in its plane, is just due to the current flowing in the loop segment. The presence of the superconducting shield simply moves the Lorentz force from the shielded loop segment to the shield itself and, as a result, the total magnetic force, acting on full loop plus shield, remains zero.
Resumo:
An electrodynamic tether system for power generation at Jupiter is presented that allows extracting energy from Jupiter's corotating plasmasphere while leaving the system orbital energy unaltered to first order. The spacecraft is placed in a polar orbit with the tether spinning in the orbital plane so that the resulting Lorentz force, neglecting Jupiter's magnetic dipole tilt, is orthogonal to the instantaneous velocity vector and orbital radius, hence affecting orbital inclination rather than orbital energy. In addition, the electrodynamic tether subsystem, which consists of two radial tether arms deployed from the main central spacecraft, is designed in such a way as to extract maximum power while keeping the resulting Lorentz torque constantly null. The power-generation performance of the system and the effect on the orbit inclination is evaluated analytically for different orbital conditions and verified numerically. Finally, a thruster-based inclination-compensation maneuver at apoapsis is added, resulting in an efficient scheme to extract energy from the plasmasphere of the planet with minimum propellant consumption and no inclination change. A tradeoff analysis is conducted showing that, depending on tether size and orbit characteristics, the system performance can be considerably higher than conventional power-generation methods.
Resumo:
An electrodynamic bare tether is shown to allow carrying out scientific observations very close to Jupiter, for exploration of its surface and subsurface, and ionospheric and atmospheric in-situ measurements. Starting at a circular equatorial orbit of radius about 1.3/1.4 times the Jovian radius, continuous propellantless Lorentz drag on a thin-tape tether in the 1-5 km length range would make a spacecraft many times as heavy as the tape slowly spiral in, over a period of many months, while generating power at a load plugged in the tether circuit for powering instruments in science data acquisition and transmission. Lying under the Jovian radiation belts, the tape would avoid the most severe problem facing tethers in Jupiter, which are capable of producing both power and propulsion but, operating slowly, could otherwise accumulate too high a radiation dose . The tether would be made to spin in its orbit to keep taut; how to balance the Lorentz torque is discussed. Constraints on heating and bowing are also discussed, comparing conditions for prograde versus retrograde orbits. The system adapts well to the moderate changes in plasma density and motional electric field through the limited radial range in their steep gradients near Jupiter.
Resumo:
A power generation scheme based on bare electrodynamic tethers (EDT), working in passive mode is investigated for the purpose of supplying power to scientific missions at Saturn. The system employs a spinning EDT on a lowaltitude polar orbit which permits to efficiently convert plasmasphere energy into useful power. After optimizing the tether design for power generation we compute the supplied power along the orbit and the impact of the Lorentz force on the orbital elements as function of the tether and orbit characteristics. Although uncertainties in the current ionosphere density modeling strongly affect the performance of the system the peak power density of the EDT appears be greater than conventional power systems.
Resumo:
El entorno espacial actual hay un gran numero de micro-meteoritos y basura espacial generada por el hombre, lo cual plantea un riesgo para la seguridad de las operaciones en el espacio. La situación se agrava continuamente a causa de las colisiones de basura espacial en órbita, y los nuevos lanzamientos de satélites. Una parte significativa de esta basura son satélites muertos, y fragmentos de satélites resultantes de explosiones y colisiones de objetos en órbita. La mitigación de este problema se ha convertido en un tema de preocupación prioritario para todas las instituciones que participan en operaciones espaciales. Entre las soluciones existentes, las amarras electrodinámicas (EDT) proporcionan un eficiente dispositivo para el rápido de-orbitado de los satélites en órbita terrestre baja (LEO), al final de su vida útil. El campo de investigación de las amarras electrodinámicas (EDT) ha sido muy fructífero desde los años 70. Gracias a estudios teóricos, y a misiones para la demostración del funcionamiento de las amarras en órbita, esta tecnología se ha desarrollado muy rápidamente en las últimas décadas. Durante este período de investigación, se han identificado y superado múltiples problemas técnicos de diversa índole. Gran parte del funcionamiento básico del sistema EDT depende de su capacidad de supervivencia ante los micro-meteoritos y la basura espacial. Una amarra puede ser cortada completamente por una partícula cuando ésta tiene un diámetro mínimo. En caso de corte debido al impacto de partículas, una amarra en sí misma, podría ser un riesgo para otros satélites en funcionamiento. Por desgracia, tras varias demostraciones en órbita, no se ha podido concluir que este problema sea importante para el funcionamiento del sistema. En esta tesis, se presenta un análisis teórico de la capacidad de supervivencia de las amarras en el espacio. Este estudio demuestra las ventajas de las amarras de sección rectangular (cinta), en cuanto a la probabilidad de supervivencia durante la misión, frente a las amarras convencionales (cables de sección circular). Debido a su particular geometría (longitud mucho mayor que la sección transversal), una amarra puede tener un riesgo relativamente alto de ser cortado por un único impacto con una partícula de pequeñas dimensiones. Un cálculo analítico de la tasa de impactos fatales para una amarra cilindrica y de tipo cinta de igual longitud y masa, considerando el flujo de partículas de basura espacial del modelo ORDEM2000 de la NASA, muestra mayor probabilidad de supervivencia para las cintas. Dicho análisis ha sido comparado con un cálculo numérico empleando los modelos de flujo el ORDEM2000 y el MASTER2005 de ESA. Además se muestra que, para igual tiempo en órbita, una cinta tiene una probabilidad de supervivencia un orden y medio de magnitud mayor que una amarra cilindrica con igual masa y longitud. Por otra parte, de-orbitar una cinta desde una cierta altitud, es mucho más rápido, debido a su mayor perímetro que le permite capturar más corriente. Este es un factor adicional que incrementa la probabilidad de supervivencia de la cinta, al estar menos tiempo expuesta a los posibles impactos de basura espacial. Por este motivo, se puede afirmar finalmente y en sentido práctico, que la capacidad de supervivencia de la cinta es bastante alta, en comparación con la de la amarra cilindrica. El segundo objetivo de este trabajo, consiste en la elaboración de un modelo analítico, mejorando la aproximación del flujo de ORDEM2000 y MASTER2009, que permite calcular con precisión, la tasa de impacto fatal al año para una cinta en un rango de altitudes e inclinaciones, en lugar de unas condiciones particulares. Se obtiene el numero de corte por un cierto tiempo en función de la geometría de la cinta y propiedades de la órbita. Para las mismas condiciones, el modelo analítico, se compara con los resultados obtenidos del análisis numérico. Este modelo escalable ha sido esencial para la optimización del diseño de la amarra para las misiones de de-orbitado de los satélites, variando la masa del satélite y la altitud inicial de la órbita. El modelo de supervivencia se ha utilizado para construir una función objetivo con el fin de optimizar el diseño de amarras. La función objectivo es el producto del cociente entre la masa de la amarra y la del satélite y el numero de corte por un cierto tiempo. Combinando el modelo de supervivencia con una ecuación dinámica de la amarra donde aparece la fuerza de Lorentz, se elimina el tiempo y se escribe la función objetivo como función de la geometría de la cinta y las propietades de la órbita. Este modelo de optimización, condujo al desarrollo de un software, que esta en proceso de registro por parte de la UPM. La etapa final de este estudio, consiste en la estimación del número de impactos fatales, en una cinta, utilizando por primera vez una ecuación de límite balístico experimental. Esta ecuación ha sido desarollada para cintas, y permite representar los efectos tanto de la velocidad de impacto como el ángulo de impacto. Los resultados obtenidos demuestran que la cinta es altamente resistente a los impactos de basura espacial, y para una cinta con una sección transversal definida, el número de impactos críticos debidos a partículas no rastreables es significativamente menor. ABSTRACT The current space environment, consisting of man-made debris and tiny meteoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Among these debris a significant portion is due to dead satellites and fragments of satellites resulted from explosions and in-orbit collisions. Mitigation of space debris has become an issue of first concern for all the institutions involved in space operations. Bare electrodynamic tethers (EDT) can provide an efficient mechanism for rapid de-orbiting of defunct satellites from low Earth orbit (LEO) at end of life. The research on EDT has been a fruitful field since the 70’s. Thanks to both theoretical studies and in orbit demonstration missions, this technology has been developed very fast in the following decades. During this period, several technical issues were identified and overcome. The core functionality of EDT system greatly depends on their survivability to the micrometeoroids and orbital debris, and a tether can become itself a kind of debris for other operating satellites in case of cutoff due to particle impact; however, this very issue is still inconclusive and conflicting after having a number of space demonstrations. A tether can be completely cut by debris having some minimal diameter. This thesis presents a theoretical analysis of the survivability of tethers in space. The study demonstrates the advantages of tape tethers over conventional round wires particularly on the survivability during the mission. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. As a first approach to the problem, survival probability has been compared for a round and a tape tether of equal mass and length. The rates of fatal impact of orbital debris on round and tape tether, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 shows good agreement with the analytical result. It also shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because de-orbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high. As the next step, an analytical model derived in this work allows to calculate accurately the fatal impact rate per year for a tape tether. The model uses power laws for debris-size ranges, in both ORDEM2000 and MASTER2009 debris flux models, to calculate tape tether survivability at different LEO altitudes. The analytical model, which depends on tape dimensions (width, thickness) and orbital parameters (inclinations, altitudes) is then compared with fully numerical results for different orbit inclinations, altitudes and tape width for both ORDEM2000 and MASTER2009 flux data. This scalable model not only estimates the fatal impact count but has proved essential in optimizing tether design for satellite de-orbit missions varying satellite mass and initial orbital altitude and inclination. Within the frame of this dissertation, a simple analysis has been finally presented, showing the scalable property of tape tether, thanks to the survivability model developed, that allows analyze and compare de-orbit performance for a large range of satellite mass and orbit properties. The work explicitly shows the product of tether-to-satellite mass-ratio and fatal impact count as a function of tether geometry and orbital parameters. Combining the tether dynamic equation involving Lorentz drag with space debris impact survivability model, eliminates time from the expression. Hence the product, is independent of tether de-orbit history and just depends on mission constraints and tether length, width and thickness. This optimization model finally led to the development of a friendly software tool named BETsMA, currently in process of registration by UPM. For the final step, an estimation of fatal impact rate on a tape tether has been done, using for the first time an experimental ballistic limit equation that was derived for tapes and accounts for the effects of both the impact velocity and impact angle. It is shown that tape tethers are highly resistant to space debris impacts and considering a tape tether with a defined cross section, the number of critical events due to impact with non-trackable debris is always significantly low.
Resumo:
One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.
Resumo:
Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.
Resumo:
A Space tether is a thin, multi-kilometers long conductive wire, joining a satellite and some opposite end mass, and keeping vertical in orbit by the gravity-gradient. The ambient plasma, being highly conductive, is equipotential in its own co-moving frame. In the tether frame, in relative motion however, there is in the plasma a motional electric field of order of 100 V/km, product of (near) orbital velocity and geomagnetic field. The electromotive force established over the tether length allows plasma contactor devices to collect electrons at one polarized-positive (anodic) end and eject electrons at the opposite end, setting up a current along a standard, fully insulated tether. The Lorentz force exerted on the current by the geomagnetic field itself is always drag; this relies on just thermodynamics, like air drag. The bare tether concept, introduced in 1992 at the Universidad Politécnica de Madrid (UPM), takes away the insulation and has electrons collected over the tether segment coming out polarized positive; the concept rests on 2D (Langmuir probe) current-collection in plasmas being greatly more efficient than 3D collection. A Plasma Contactor ejects electrons at the cathodic end. A bare tether with a thin-tape cross section has much greater perimeter and de-orbits much faster than a (corresponding) round bare tether of equal length and mass. Further, tethers being long and thin, they are prone to cuts by abundant small space debris, but BETs has shown that the tape has a probability of being cut per unit time smaller by more than one order of magnitude than the corresponding round tether (debris comparable to its width are much less abundant than debris comparable to the radius of the corresponding round tether). Also, the tape collects much more current, and de-orbits much faster, than a corresponding multi-line “tape” made of thin round wires cross-connected to survive debris cuts. Tethers use a dissipative mechanism quite different from air drag and can de-orbit in just a few months; also, tape tethers are much lighter than round tethers of equal length and perimeter, which can capture equal current. The 3 disparate tape dimensions allow easily scalable design. Switching the cathodic Contactor off-on allows maneuvering to avoid catastrophic collisions with big tracked debris. Lorentz braking is as reliable as air drag. Tethers are still reasonably effective at high inclinations, where the motional field is small, because the geomagnetic field is not just a dipole along the Earth polar axis. BETs is the EC FP7/Space Project 262972, financed in about 1.8 million euros, from 1 November 2010 to 31 January 2014, and carrying out RTD work on de-orbiting space debris. Coordinated by UPM, it has partners Università di Padova, ONERA-Toulouse, Colorado State University, SME Emxys, DLR–Bremen, and Fundación Tecnalia. BETs work involves 1) Designing, building, and ground-testing basic hardware subsystems Cathodic Plasma Contactor, Tether Deployment Mechanism, Power Control Module, and Tape with crosswise and lengthwise structure. 2) Testing current collection and verifying tether dynamical stability. 3) Preliminary design of tape dimensions for a generic mission, conducive to low system-to-satellite mass ratio and probability of cut by small debris, and ohmic-effects regime of tether current for fast de-orbiting. Reaching TRL 4-5, BETs appears ready for in-orbit demostration.
Resumo:
La medida de calidad de vídeo sigue siendo necesaria para definir los criterios que caracterizan una señal que cumpla los requisitos de visionado impuestos por el usuario. Las nuevas tecnologías, como el vídeo 3D estereoscópico o formatos más allá de la alta definición, imponen nuevos criterios que deben ser analizadas para obtener la mayor satisfacción posible del usuario. Entre los problemas detectados durante el desarrollo de esta tesis doctoral se han determinado fenómenos que afectan a distintas fases de la cadena de producción audiovisual y tipo de contenido variado. En primer lugar, el proceso de generación de contenidos debe encontrarse controlado mediante parámetros que eviten que se produzca el disconfort visual y, consecuentemente, fatiga visual, especialmente en lo relativo a contenidos de 3D estereoscópico, tanto de animación como de acción real. Por otro lado, la medida de calidad relativa a la fase de compresión de vídeo emplea métricas que en ocasiones no se encuentran adaptadas a la percepción del usuario. El empleo de modelos psicovisuales y diagramas de atención visual permitirían ponderar las áreas de la imagen de manera que se preste mayor importancia a los píxeles que el usuario enfocará con mayor probabilidad. Estos dos bloques se relacionan a través de la definición del término saliencia. Saliencia es la capacidad del sistema visual para caracterizar una imagen visualizada ponderando las áreas que más atractivas resultan al ojo humano. La saliencia en generación de contenidos estereoscópicos se refiere principalmente a la profundidad simulada mediante la ilusión óptica, medida en términos de distancia del objeto virtual al ojo humano. Sin embargo, en vídeo bidimensional, la saliencia no se basa en la profundidad, sino en otros elementos adicionales, como el movimiento, el nivel de detalle, la posición de los píxeles o la aparición de caras, que serán los factores básicos que compondrán el modelo de atención visual desarrollado. Con el objetivo de detectar las características de una secuencia de vídeo estereoscópico que, con mayor probabilidad, pueden generar disconfort visual, se consultó la extensa literatura relativa a este tema y se realizaron unas pruebas subjetivas preliminares con usuarios. De esta forma, se llegó a la conclusión de que se producía disconfort en los casos en que se producía un cambio abrupto en la distribución de profundidades simuladas de la imagen, aparte de otras degradaciones como la denominada “violación de ventana”. A través de nuevas pruebas subjetivas centradas en analizar estos efectos con diferentes distribuciones de profundidades, se trataron de concretar los parámetros que definían esta imagen. Los resultados de las pruebas demuestran que los cambios abruptos en imágenes se producen en entornos con movimientos y disparidades negativas elevadas que producen interferencias en los procesos de acomodación y vergencia del ojo humano, así como una necesidad en el aumento de los tiempos de enfoque del cristalino. En la mejora de las métricas de calidad a través de modelos que se adaptan al sistema visual humano, se realizaron también pruebas subjetivas que ayudaron a determinar la importancia de cada uno de los factores a la hora de enmascarar una determinada degradación. Los resultados demuestran una ligera mejora en los resultados obtenidos al aplicar máscaras de ponderación y atención visual, los cuales aproximan los parámetros de calidad objetiva a la respuesta del ojo humano. ABSTRACT Video quality assessment is still a necessary tool for defining the criteria to characterize a signal with the viewing requirements imposed by the final user. New technologies, such as 3D stereoscopic video and formats of HD and beyond HD oblige to develop new analysis of video features for obtaining the highest user’s satisfaction. Among the problems detected during the process of this doctoral thesis, it has been determined that some phenomena affect to different phases in the audiovisual production chain, apart from the type of content. On first instance, the generation of contents process should be enough controlled through parameters that avoid the occurrence of visual discomfort in observer’s eye, and consequently, visual fatigue. It is especially necessary controlling sequences of stereoscopic 3D, with both animation and live-action contents. On the other hand, video quality assessment, related to compression processes, should be improved because some objective metrics are adapted to user’s perception. The use of psychovisual models and visual attention diagrams allow the weighting of image regions of interest, giving more importance to the areas which the user will focus most probably. These two work fields are related together through the definition of the term saliency. Saliency is the capacity of human visual system for characterizing an image, highlighting the areas which result more attractive to the human eye. Saliency in generation of 3DTV contents refers mainly to the simulated depth of the optic illusion, i.e. the distance from the virtual object to the human eye. On the other hand, saliency is not based on virtual depth, but on other features, such as motion, level of detail, position of pixels in the frame or face detection, which are the basic features that are part of the developed visual attention model, as demonstrated with tests. Extensive literature involving visual comfort assessment was looked up, and the development of new preliminary subjective assessment with users was performed, in order to detect the features that increase the probability of discomfort to occur. With this methodology, the conclusions drawn confirmed that one common source of visual discomfort was when an abrupt change of disparity happened in video transitions, apart from other degradations, such as window violation. New quality assessment was performed to quantify the distribution of disparities over different sequences. The results confirmed that abrupt changes in negative parallax environment produce accommodation-vergence mismatches derived from the increasing time for human crystalline to focus the virtual objects. On the other side, for developing metrics that adapt to human visual system, additional subjective tests were developed to determine the importance of each factor, which masks a concrete distortion. Results demonstrated slight improvement after applying visual attention to objective metrics. This process of weighing pixels approximates the quality results to human eye’s response.
Resumo:
The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.
Resumo:
Gaines’ legal team, led by Houston, had faith in the justice system of the United States and anticipated getting a fair trial at the federal level. So far, all decisions had occurred in Missouri, a state with a segregated system.The fact that Gaines v Canada had reached the Supreme Court was promising indeed. It was rare that any case involving African-Americans would be considered by the highest court in the land. President Franklin D. Roosevelt had been appointing Justices that were more willing to consider cases concerned with civil rights. On November 9, 1938, the Supreme Court of the United States heard arguments in the Gaines v Canada case. The defense was unmoved by the rude treatment and made their presentation with professionalism and aplomb. Houston’s argument remained steadfast; not only was the state of Missouri’s statute concerning out-of-state tuition for blacks in violation of the 14th Amendment, but the very idea of segregation itself violated the Constitution. William Hogsett, the attorney for the University of Missouri, countered that the school was merely following state laws. The MU legal team was flustered as questions from the bench forced them to correct overstatements regarding Missouri’s “generosity to Negro students”. With crossed fingers and high hopes, the Gaines legal team rested their case and awaited the verdict. Meanwhile, Lloyd Gaines was still in Michigan. Lloyd held a W.P.A. job as a Civil Service Clerk and was in constant contact with his family and attorneys. His mood in his correspondence was hopeful and positive.