Propellantless deorbiting of space debris by bare electrodynamic tethers : final report
Data(s) |
31/01/2014
|
---|---|
Resumo |
A Space tether is a thin, multi-kilometers long conductive wire, joining a satellite and some opposite end mass, and keeping vertical in orbit by the gravity-gradient. The ambient plasma, being highly conductive, is equipotential in its own co-moving frame. In the tether frame, in relative motion however, there is in the plasma a motional electric field of order of 100 V/km, product of (near) orbital velocity and geomagnetic field. The electromotive force established over the tether length allows plasma contactor devices to collect electrons at one polarized-positive (anodic) end and eject electrons at the opposite end, setting up a current along a standard, fully insulated tether. The Lorentz force exerted on the current by the geomagnetic field itself is always drag; this relies on just thermodynamics, like air drag. The bare tether concept, introduced in 1992 at the Universidad Politécnica de Madrid (UPM), takes away the insulation and has electrons collected over the tether segment coming out polarized positive; the concept rests on 2D (Langmuir probe) current-collection in plasmas being greatly more efficient than 3D collection. A Plasma Contactor ejects electrons at the cathodic end. A bare tether with a thin-tape cross section has much greater perimeter and de-orbits much faster than a (corresponding) round bare tether of equal length and mass. Further, tethers being long and thin, they are prone to cuts by abundant small space debris, but BETs has shown that the tape has a probability of being cut per unit time smaller by more than one order of magnitude than the corresponding round tether (debris comparable to its width are much less abundant than debris comparable to the radius of the corresponding round tether). Also, the tape collects much more current, and de-orbits much faster, than a corresponding multi-line “tape” made of thin round wires cross-connected to survive debris cuts. Tethers use a dissipative mechanism quite different from air drag and can de-orbit in just a few months; also, tape tethers are much lighter than round tethers of equal length and perimeter, which can capture equal current. The 3 disparate tape dimensions allow easily scalable design. Switching the cathodic Contactor off-on allows maneuvering to avoid catastrophic collisions with big tracked debris. Lorentz braking is as reliable as air drag. Tethers are still reasonably effective at high inclinations, where the motional field is small, because the geomagnetic field is not just a dipole along the Earth polar axis. BETs is the EC FP7/Space Project 262972, financed in about 1.8 million euros, from 1 November 2010 to 31 January 2014, and carrying out RTD work on de-orbiting space debris. Coordinated by UPM, it has partners Università di Padova, ONERA-Toulouse, Colorado State University, SME Emxys, DLR–Bremen, and Fundación Tecnalia. BETs work involves 1) Designing, building, and ground-testing basic hardware subsystems Cathodic Plasma Contactor, Tether Deployment Mechanism, Power Control Module, and Tape with crosswise and lengthwise structure. 2) Testing current collection and verifying tether dynamical stability. 3) Preliminary design of tape dimensions for a generic mission, conducive to low system-to-satellite mass ratio and probability of cut by small debris, and ohmic-effects regime of tether current for fast de-orbiting. Reaching TRL 4-5, BETs appears ready for in-orbit demostration. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.T.S. de Ingeniería Aeronáutica y del Espacio (UPM) |
Relação |
http://oa.upm.es/39287/1/Final%20BETs%20Report%202.pdf http://www.thebetsproject.com/ info:eu-repo/grantAgreement/EC/FP7/262972 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Palavras-Chave | #Aeronáutica #Física |
Tipo |
info:eu-repo/semantics/other Monográfico (Informes, Documentos de trabajo, etc) NonPeerReviewed |