941 resultados para Lean mass
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.
Resumo:
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work electrospray ionization tandem mass spectrometry was used to explore the ester-exchange reactions for aconitine-type diester-diterpenoid alkaloids occurring during the process of decocting aconite root. The aconitines were screened in a diverse range of samples, including crude aconite, decoction of crude aconite, residues from decoction of crude aconite, prepared aconite, decoction of prepared aconite, decoction of prepared aconite with added palmitic acid, and decoction of a mixture of mesaconitine and hypaconitine standards with liquorice root. It was found that diester-diterpenoid aconitines were converted into lipo-alkaloids as well as monoester alkaloids by the decoction of aconite.
Resumo:
The fragmentation mechanism of aconitine-type alkaloids in the flowers of Aconitum kusnezoffii (FAK) was investigated using electrospray ionization tandem mass spectrometry (ESI-MSn) firstly. The analysis of the collision-induced dissociation (CID) spectra of three purified aconitine standards and six previously reported aconitines indicated that the fragmentation of the protonated aconitines at low-energy CID follows a similar pathway. The elimination of a C-8-substituent such as an acetic acid or a fatty acid is the dominant fragmentation mode in MS2. Successive losses of CH3COOH, CH3OH, H2O, BzOH, and CO are the main fragmentation pathways of aconitine-type alkaloids in MS3 spectra. Based on these features, a rapid method for the direct detection and characterization of alkaloids from an ethanolic extract of FAK is described. All the known aconitum alkaloids are detected and a series of lipo-aconitines has been found for the first time in this plant.
Resumo:
The alkaloids in processed aconite tuber of Aconitum Carmiechaeli were studied, and five novel alkaloids in extract from processed aconite tuber were found. The first step involved the use of electrospray ionization mass spectrometry (ESI-MS), and then multi-stage tandem mass spectrometry (MSn) was used to provide structural information. Based on their MSn spectra, the structures of the five novel compounds were elucidated to be C3,C8-difatty acid esters of mesaconitine, aconitine and 10-hydroxyaconitine.
Resumo:
The extraction kinetics of ytterbium with sec-nonylphenoxy acetic acid (CA-100) in heptane have been investigated using a constant interfacial area cell with laminar flow. The influence of stirring speed and temperature on the rate indicated that the extraction rate was controlled by the experiment conditions. The plot of interfacial area on the rate showed a linear relationship. This fact together with the low solubility in water and strong surface activity of CA-100 at heptane-water interfaces made the interface the most probable locale for the chemical reactions. The influences of extractant concentration and hydrogen ion concentration on the extraction rate were investigated, and the forward and reverse rate equations for the ytterbium extraction with CA-100 were also obtained. Based on the experimental data, the apparent forward extraction rate constant was calculated. Interfacial reaction models were proposed that agree well with the rate equations obtained from experimental data.
Resumo:
Non-covalent inclusion complexes formed between an anti-inflammatory drug, oleanolic acid (OA), and alpha-, beta- and gamma-cyclodextrins (CDs) were investigated by means of solubility studies and electrospray ionization tandem mass spectrometry (ESI-MSn). The order of calculated association constants (K-1:1) of complexes between OA and different CDs in solution is in good agreement with the order of their relative peak intensities and the relative CID energies of the complexes under the same ESI-MSn conditions. These results indicate a direct correlation between the behaviors of solution- and gas-phase complexes. ESI-MS can thus be used to evaluate solution-phase non-covalent complexes successfully. The experimental results show that the most stable 1:1 inclusion complexes between three CDs and OA can be formed, but 2:1 CD-OA complexes can be formed with beta- and gamma-CDs. Multi-component complexes of alpha-CD-OA-beta-CD (1:1:1), alpha-CD-OA-gamma-CD (1:1:1) and beta-CD-OA-gamma-CD (1:1:1) were found in equimolar CD mixtures with excess OA. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-OA complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion non-covalent complexes with OA. The above results can be partly supported by the relative sizes of OA and CD cavities by molecular modeling calculations.
Resumo:
Alignment films prepared from low molar mass photo-crosslinkable materials containing the cinnamate group can be used for aligning LCs after irradiating the films with linearly polarized UV light. The high contrast observed in the polarizing optical microscope between dark and bright images indicates that the alignment is quite uniform. As the photoreaction progresses. the average roughness of the films is increased. All the aggregate structures, 'lamellar crystals'. produced by the photo-crosslinking reaction are of a square shape.
Evaluation and application of micro-sampling system for inductively coupled plasma mass spectrometry
Resumo:
Two Meinhard microconcentric nebulizers, model AR30-07-FM02 and AR 30-07-FM005, were employed as a self-installed micro-sampling system for inductively coupled plasma-mass spectrometry (ICP-MS). The FM02 nebulizer at 22 muL/min of solution uptake rate gave the relative standard deviations of 7.6%, 3.0%, 2.7%, 1.8% for determinations (n = 10) of 20 mug/L Be, Co, In and Bi, respectively, and the detection limits (3s) of 0.14, 0.10, 0.02 and 0.01 mug/L for Be, Co In and Bi, respectively. The mass intensity of In-115 obtained by this micro-sampling system was 60% of that by conventional pneumatic nebulizer system at 1.3 mL/min. The analytical results for La, Ce, Pr and Nd in 20 muL Wistar rat amniotic fluid obtained by the present micro-sampling system were precisely in good agreement with those obtained using conventional pneumatic nebulization system.
Resumo:
A method for the determination of Au, Pt and Pd in geological samples is described. Au, Pt and Pd can be separated and concentrated quantitatively by C-410 anion-exchange resin in the condition of 1.5 mol/L HCl with the adsorption rates of 91.2%, 100.0% and 95.7% respectively. No interference exists from coexisting elements except for Ge(IV), Cr(VI),Ti(IV) in inductively coupled plasma-mass spectrometry. The detection limits are 0.27 mug/L, 0.40 mug/L and 0.19 mug/L for Au, Pt and Pd respectively. The results of these elements in standard geological materials are in agreement with certified values with precision of 19.2% RSD for Au (n = 8), 28.1% RSD for Pt (n=8), and 15.6% RSD for Pd (n=8).
Resumo:
Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.
Resumo:
A method of capillary HPLC-high-resolution MS was developed for the trace analysis of ATP, GTP, dATP and dGTP Dimethylhexylamine (DMHA) was used as ion-pairing agent for the HPLC retention and separation of the nucleotides and positive ion electrospray time-of-flight MS was used for the detection. The application of capillary HPLC allowed minimal usage of DMHA while providing excellent peak retention and resolution, which significantly reduced the ion suppression in electrospray ionization-MS analysis and thus increased the sensitivity. Adduct ions of nucleotides and DMHA were used as quantitative ions in order to achieve the best sensitivity. DMHA concentration at 5 mM in the aqueous mobile phase at pH 7 was found to be the optimal conditions for the C Is capillary column. The method was applied to determine ATP level in cultured C6 glioma cells that were treated with toxic concentrations of Zn. The results showed that the cellular ATP level decreased from 2.7 pmol/cell (<10% cell death) in average control cell samples to 0.36 pmol/cell as the concentration of Zn increased to 120 mg/l (>35% cell death) in culture medium.
Resumo:
The molecular weight of recombinant hirudin ( rHV-2) was determined rapidly by matrix-assisted laser desorption/ionization time of fight mass spectrometry (MALDI-TOF-MS). The effects of the three types of matrixes were compared and discussed, alpha-cynao-4-hydroxycinnamic acid was proved to be the best matrix. It showed that MALDI-TOF-MS was superior to the traditional method of molecular weight determination of the biological macromolecules. The mass spectrum data proved that the primary structure of rHV-2 was correct and there was no amino acid deletion, mutation and modification in its expression, refolding and purification.
Resumo:
Three known flavonoids, quercetin, quercitrin (quercetin-3-0-rhamnoside) and rutin (quercetin-3-0-rutinoside), have been identified for the first time in the leaves of Acanthopanax senticosus Harms by using electrospray tandem mass spectrometry techniques (ESI-MSn). The flavonoid hyperin (quercetin-3-0-beta-galactoside), already known to be present, was also investigated. The diagnostic fragment ions of the aglycone quercetin were obtained in the ESI-MSn experiments, and a fragmentation mechanism proposed.
Resumo:
Fragmentation pathways of aconitine-type alkaloids were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry. Low-energy collision-induced dissociation of protonated aconitines follows a dominant first step, the elimination of the C-8-substituent as acetic acid or fatty acid in MS2 spectra. Successive losses of 1-4 CH3OH molecules, 1-3 H2O, CO, benzoic acid, and CH3 or C2H5 (N-substituents) are all fragmentation pathways observed in MS3 and MS4 spectra. By applying knowledge of these fragmentation pathways to the aconitines in the ethanolic extract of aconite roots, all the known aconitines were detected and also 23 unknown aconitine-type alkaloids, in which the lipo-alkaloids containing residues of 15C, 17C and 19C saturated or unsaturated fatty acids were characterized. These odd-carbon-number fatty acid substituents have not been reported previously.