955 resultados para Laser science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This ALTC Teaching Fellowship aimed to establish Guiding Principles for Library and Information Science Education 2.0. The aim was achieved by (i) identifying the current and anticipated skills and knowledge required by successful library and information science (LIS) professionals in the age of web 2.0 (and beyond), (ii) establishing the current state of LIS education in Australia in supporting the development of librarian 2.0, and in doing so, identify models of best practice. The fellowship has contributed to curriculum renewal in the LIS profession. It has helped to ensure that LIS education in Australia continues to meet the changing skills and knowledge requirements of the profession it supports. It has also provided a vehicle through which LIS professionals and LIS educators may find opportunities for greater collaboration and more open communication. This will help bridge the gap between LIS theory and practice and will foster more authentic engagement between LIS education and other parts of the LIS industry in the education of the next generation of professionals. Through this fellowship the LIS discipline has become a role model for other disciplines who will be facing similar issues in the coming years. Eighty-one members of the Australian LIS profession participated in a series of focus groups exploring the current and anticipated skills and knowledge needed by the LIS professional in the web 2.0 world and beyond. Whilst each focus group tended to draw on specific themes of interest to that particular group of people, there was a great deal of common ground. Eight key themes emerged: technology, learning and education, research or evidence-based practice, communication, collaboration and team work, user focus, business savvy and personal traits. It was acknowledged that the need for successful LIS professionals to possess transferable skills and interpersonal attributes was not new. It was noted however that the speed with which things are changing in the web 2.0 world was having a significant impact and that this faster pace is placing a new and unexpected emphasis on the transferable skills and knowledge. It was also acknowledged that all librarians need to possess these skills, knowledge and attributes and not just the one or two role models who lead the way. The most interesting finding however was that web 2.0, library 2.0 and librarian 2.0 represented a ‘watershed’ for the LIS profession. Almost all the focus groups spoke about how they are seeing and experiencing a culture change in the profession. Librarian 2.0 requires a ‘different mindset or attitude’. The Levels of Perspective model by Daniel Kim provides one lens by which to view this finding. The focus group findings suggest that we are witnessing a re-awaking of the Australian LIS profession as it begins to move towards the higher levels of Kim’s model (ie mental models, vision). Thirty-six LIS educators participated in telephone interviews aimed at exploring the current state of LIS education in supporting the development of librarian 2.0. Skills and knowledge of LIS professionals in a web 2.0 world that were identified and discussed by the LIS educators mirrored those highlighted in the focus group discussions with LIS professionals. Similarly it was noted that librarian 2.0 needed a focus less on skills and knowledge and more on attitude. However, whilst LIS professionals felt that there was a paradigm shift within the profession. LIS educators did not speak with one voice on this matter with quite a number of the educators suggesting that this might be ‘overstating it a bit’. This study provides evidence for “disparate viewpoints” (Hallam, 2007) between LIS educators and LIS professionals that can have a significant implications for the future of not just LIS professional education specifically but for the profession generally. Library and information science education 2.0: guiding principles and models of best practice 1 Inviting the LIS academics to discuss how their teaching and learning activities support the development of librarian 2.0 was a core part of the interviews conducted. The strategies used and the challenges faced by LIS educators in developing their teaching and learning approaches to support the formation of librarian 2.0 are identified and discussed. A core part of the fellowship was the identification of best practice examples on how LIS educators were developing librarian 2.0. Twelve best practice examples were identified. Each educator was recorded discussing his or her approach to teaching and learning. Videos of these interviews are available via the Fellowship blog at .The LIS educators involved in making the videos felt uncomfortable with the term ‘best practice’. Many acknowledged that there simply seeking to do the best by their students and that there was always room for improvement. For this reason these videos are offered as examples of “great practice”. The videos are a tool for other educators to use, regardless of discipline, in developing their teaching and learning approaches to supporting web 2.0 professionals. It has been argued that the main purpose of professional education is transformation (Dall’ Alba, 2009; Dall’Alba & Barnacle, 2007). As such professional education should focus not just on skills and knowledge acquisition but also on helping students to develop ways of being the professionals in question (ie LIS professionals, teachers, lawyers, engineers).The aim of this fellowship was to establish Guidelines for Library and Information Science Education 2.0 it has however become apparent that at this point in time it is not yet possible to fulfil this aim. The fellowship has clearly identified skills and knowledge needed by the LIS professional in web 2.0 world (and beyond). It has also identified examples of ‘great practice’ by LIS educators as they endeavour to develop LIS professionals who will be successful in a web 20 world. The fellowship however has also shown that the LIS profession is currently undergoing significant attitudinal and conceptual change. Consequently, before a philosophy of LIS education 2.0 can be expressed, the Australian LIS profession must first explore and articulate what it means to be an LIS professional in the 21st century (ie a world of web 2.0 and beyond). In short, the LIS profession in Australia must take stock not of “what we know and can do” but on “who we are becoming” (Dall’Alba, 2009, p 34).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, there is a crisis in science education with students becoming disengaged with canonical science in the middle years of schooling. One recent initiative that aims to improve student interest and motivation without diminishing conceptual understanding is the context-based approach. Contextual units that connect the canonical science with the students’ real world of their local community have been used in the senior years but are new in the middle years. This ethnographic study explored the learning transactions that occurred in one 9th grade science class studying an Environmental Science unit for 11 weeks. Data were derived from field notes, audio and video recorded conversations, interviews, student journals and classroom documents with a particular focus on two selected groups of students. Data were analysed qualitatively through coding for emergent themes. This paper presents an outline of the program and discussion of three assertions derived from the preliminary analysis of the data. Firstly, an integrated, coherent sequence of learning experiences that included weekly visits to a creek adjacent to the school enabled the teacher to contextualise the science in the students’ local community. Secondly, content was predominantly taught on a need-to-know basis and thirdly, the lesson sequence aligned with a model for context-based teaching. Research, teaching and policy implications of these results for promoting the context-based teaching of science in the middle years are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will report on the way expert science teachers’ conceive of scientific literacy in their classrooms, the values related to scientific literacy they hold and how this conception and the underpinning values affect their teaching practice. Three perceived expert science teachers who teach both at senior and middle school levels and across the range of sub-disciplines (one senior biology, one senior chemistry and one senior physics) were interviewed about their understanding of scientific literacy and how this influenced their teaching practice. The three teachers were video recorded teaching a junior science class and a senior science class. The data were analysed to identify values that underpin their conceptions of science and science education. The analysis focussed on the matching of the verbalised conceptions and values with their practice of teaching science. This paper will report on these data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Goals and potential impacts of QUT corporate Blueprint3 framework, university has made significant investments in physical infrastructure, and investments to improve staff profiles, particularly in relation to science, technology, engineering, and mathematics (STEM) disciplines. The most significant physical change to the Faculty’s infrastructure has seen new workshop and teaching and research spaces located in Science and Technology precinct under construction. Also includes Alumni news, input and output numbers Spatial Science discussion, Work Integrated Learning (WIL) in 2011, some key teaching administrative dates in 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple awards for Spatial/Surveying lecturer, raising entry quality and commencing numbers at QUT, Gardens Point rapt in promise of things to come, STEM building progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For almost a half century David F. Treafust has been an exemplary science educator who has contributed through his dedication and commitments to students, curriculum development and collaboration with teachers, and cutting edge research in science education that has impacted the field globally, nationally and locally. A hallmark of his outstanding career is his collaborative style that inspires others to produce their best work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can Australian library and information science (LIS) education produce, in a sustainable manner, the diverse supply of graduates with the appropriate attributes to develop and maintain high quality professional practice in the rapidly changing 21st century? This report presents the key findings of a project that has examined this question through research into future directions for LIS education in Australia. Titled Re-conceptualising and re-positioning Australian library and information science education for the twenty-first century, the purpose of the project was to establish a consolidated and holistic picture of the Australian LIS profession, and identify how its future education and training can be mediated in a cohesive and sustainable manner. The project was undertaken with a team of 12 university and vocational LIS educators from 11 institutions around Australia between November 2009 and December 2010. Collectively, these eleven institutions represented the broad spectrum and diversity of LIS education in Australia, and enabled the project to examine education for the information profession in a holistic and synergistic manner. Participating institutions in the project included Queensland University of Technology (Project Leader), Charles Sturt University, Curtin University of Technology, Edith Cowan University, Monash University, RMIT University, University of Canberra, University of South Australia, University of Tasmania, University of Technology Sydney and Victoria University. The inception and need for the project was motivated by a range of factors. From a broad perspective several of these factors relate to concerns raised at national and international levels regarding problems with education for LIS. In addition, the motivation and need for the project also related to some unique challenges that LIS education faces in the Australian tertiary education landscape. Over recent years a range of responses to explore the various issues confronting LIS education in Australia have emerged at local and national levels however this project represented the first significant investment of funding for national research in this area. In this way, the inception of the project offered a unique opportunity and powerful mechanism through which to bring together key stakeholders and inspire discourse concerning future education for the profession. Therefore as the first national project of its kind, its intent has been to provide foundation research that will inform and guide future directions for LIS education and training in Australia. The primary objective of the project was to develop a Framework for the Education of the Information Professions in Australia. The purpose of this framework was to provide evidence based strategic recommendations that would guide Australia’s future education for the information professions. Recognising the three major and equal players in the education process the project was framed around three areas of consideration: LIS students, the LIS workforce and LIS educators. Each area of consideration aligned to a research substudy in the project. The three research substudies were titled Student Considerations, Workforce Planning Considerations and Tertiary Education Considerations. The Students substudy provided a profile of LIS students and an analysis of their choices, experiences and expectations in regard to LIS education and their graduate destinations. The Workforce substudy provided an overview and analysis of the nature of the current LIS workforce, including a focus on employer expectations and employment opportunities and comment on the core and elective skill, knowledge and attitudes of current and future LIS professionals. Finally the Tertiary Education substudy provided a profile of LIS educators and an analysis of their characteristics and experiences including the key issues and challenges. In addition it also explored current national and international trends and priorities impacting on LIS education. The project utilised a Community Based Participatory Research (CBPR) approach. This approach involves all members of the community in all aspects of the project. It recognised the unique strengths and perspectives that community members bring to the process. For this project ‘community’ comprised of all individuals who have a role in, or a vested interest in, LIS education and included LIS educators, professionals, employers, students and professional associations. Individuals from these sub-groups were invited to participate in a range of aspects of the project from design through to implementation and evaluation. A range of research methodologies were used to consider the many different perspectives of LIS education, including employers and recruiters, professional associations, students, graduates and LIS teaching staff. Data collection involved a mixed method approach of questionnaires, focus groups, semi-structured interviews and environmental scans. An array of approaches was selected to ensure that broadest possible access to different facets of the information profession would be achieved. The main findings and observations from each substudy have highlighted a range of challenges for LIS education that need to be addressed. These findings and observations have grounded the development of the Framework for the Education of the Information Professions in Australia. The framework presents eleven recommendations to progress the national approach to LIS education and guide Australia’s future education for the information professions. The framework will be used by the LIS profession, most notably its educators, as strategic directions for the future of LIS education in Australia. Framework for the Education of the Information Professions in Australia: Recommendation 1: It is recommended that a broader and more inclusive vocabulary be adopted that both recognises and celebrates the expanding landscape of the field, for example ‘information profession’, ‘information sector’, ‘information discipline’ and ‘information education’. Recommendation 2: It is recommended that a self-directed body composed of information educators be established to promote, support and lead excellence in teaching and research within the information discipline. Recommendation 3: It is recommended that Australia’s information discipline continue to develop excellence in information research that will raise the discipline’s profile and contribute to its prominence within the national and international arena. Recommendation 4: It is recommended that further research examining the nature and context of Australia’s information education programs be undertaken to ensure a sustainable and relevant future for the discipline. Recommendation 5: It is recommended that further research examining the pathways and qualifications available for entry into the Australian information sector be undertaken to ensure relevance, attractiveness, accessibility and transparency. Recommendation 6: It is recommended that strategies are developed and implemented to ensure the sustainability of the workforce of information educators. Recommendation 7: It is recommended that a national approach to promoting and marketing the information profession and thereby attracting more students to the field is developed. Recommendation 8: It is recommended that Australia’s information discipline continues to support a culture of quality teaching and learning, especially given the need to accommodate a focus on the broader information landscape and more flexible delivery options. Recommendation 9: It is recommended that strategies are developed that will support and encourage collaboration between information education within the higher education and VET sectors. Recommendation 10: It is recommended that strategies and forums are developed that will support the information sector working together to conceptualise and articulate their professional identity and educational needs. Recommendation 11: It is recommended that a research agenda be established that will identify and prioritise areas in which further development or work is needed to continue advancing information education in Australia. The key findings from this project confirm that a number of pressing issues are confronting LIS education in Australia. Left unaddressed these issues will have significant implications for the future of LIS education as well as the broader LIS profession. Consequently creating a sustainable and cohesive future can only be realised through cooperation and collaboration among all stakeholders including those with the capacity to enact radical change in university and vocational institutions. Indeed the impending adoption and implementation of the project’s recommendations will fundamentally determine whether Australian LIS education is assured both for the present day and into the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter focuses on two challenges to science teachers’ knowledge that Fensham identifies as having recently emerged—one a challenge from beyond Science and the other a challenge from within Science. Both challenges stem from common features of contemporary society, namely, its complexity and uncertainty. Both also confront science teachers with teaching situations that contrast markedly with the simplicity and certainty that have been characteristic of most school science education, and hence both present new demands for science teachers’ knowledge and skill. The first, the challenge from without Science, comes from the new world of work and the “knowledge society”. Regardless of their success in traditional school learning, many young persons in many modern economies are now seen as lacking other knowledge and skills that are essential for their personal, social and economic life. The second, the challenge from within Science, derives from changing notions of the nature of science itself. If the complexity and uncertainty of the knowledge society demand new understandings and contributions from science teachers, these are certainly matched by the demands that are posed by the role of complexity and uncertainty in science itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of "Progressing science education: constructing the scientific research programme into the contingent nature of learning science", by Keith S. Taber, Dordrecht, Springer, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study is to identify risk factors for developing complications following treatment of refractory glaucoma with transscleral diode laser cyclophotocoagulation (cyclodiode), to improve the safety profile of this treatment modality. METHOD: A retrospective analysis of 72 eyes from 70 patients who were treated with cyclodiode. RESULTS: The mean pre-treatment IOP was 37.0 mmHg (SD 11.0), with a mean post-treatment reduction in intraocular pressure (IOP) of 19.8 mmHg, and a mean IOP at last follow-up of 17.1 mmHg (SD 9.7). Mean total power delivered during treatment was 156.8 Joules (SD 82.7) over a mean of 1.3 treatments (SD 0.6). Sixteen eyes (22.2% of patients) developed complications from the treatment, with the most common being hypotony, occurring in 6 patients, including 4 with neovascular glaucoma. A higher pre-treatment IOP and higher mean total power delivery also were associated with higher complications. CONCLUSIONS: Cyclodiode is an effective treatment option for glaucoma that is refractory to other treatment options. By identifying risk factors for potential complications, cyclodiode can be modified accordingly for each patient to improve safety and efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).