965 resultados para Interplanetary missions
Resumo:
La propulsión eléctrica constituye hoy una tecnología muy competitiva y de gran proyección de futuro. Dentro de los diversos motores de plasma existentes, el motor de efecto Hall ha adquirido una gran madurez y constituye un medio de propulsión idóneo para un rango amplio de misiones. En la presente Tesis se estudian los motores Hall con geometría convencional y paredes dieléctricas. La compleja interacción entre los múltiples fenómenos físicos presentes hace que sea difícil la simulación del plasma en estos motores. Los modelos híbridos son los que representan un mejor compromiso entre precisión y tiempo de cálculo. Se basan en utilizar un modelo fluido para los electrones y algoritmos de dinámica de partículas PIC (Particle-In- Cell) para los iones y los neutros. Permiten hacer uso de la hipótesis de cuasineutralidad del plasma, a cambio de resolver separadamente las capas límite (o vainas) que se forman en torno a las paredes de la cámara. Partiendo de un código híbrido existente, llamado HPHall-2, el objetivo de la Tesis doctoral ha sido el desarrollo de un código híbrido avanzado que mejorara la simulación de la descarga de plasma en un motor de efecto Hall. Las actualizaciones y mejoras realizadas en las diferentes partes que componen el código comprenden tanto aspectos teóricos como numéricos. Fruto de la extensa revisión de la algoritmia del código HPHall-2 se han conseguido reducir los errores de precisión un orden de magnitud, y se ha incrementado notablemente su consistencia y robustez, permitiendo la simulación del motor en un amplio rango de condiciones. Algunos aspectos relevantes a destacar en el subcódigo de partículas son: la implementación de un nuevo algoritmo de pesado que permite determinar de forma más precisa el flujo de las magnitudes del plasma; la implementación de un nuevo algoritmo de control de población, que permite tener suficiente número de partículas cerca de las paredes de la cámara, donde los gradientes son mayores y las condiciones de cálculo son más críticas; las mejoras en los balances de masa y energía; y un mejor cálculo del campo eléctrico en una malla no uniforme. Merece especial atención el cumplimiento de la condición de Bohm en el borde de vaina, que en los códigos híbridos representa una condición de contorno necesaria para obtener una solución consistente con el modelo de interacción plasma-pared, y que en HPHall-2 aún no se había resuelto satisfactoriamente. En esta Tesis se ha implementado el criterio cinético de Bohm para una población de iones con diferentes cargas eléctricas y una gran dispersión de velocidades. En el código, el cumplimiento de la condición cinética de Bohm se consigue por medio de un algoritmo que introduce una fina capa de aceleración nocolisional adyacente a la vaina y mide adecuadamente el flujo de partículas en el espacio y en el tiempo. Las mejoras realizadas en el subcódigo de electrones incrementan la capacidad de simulación del código, especialmente en la región aguas abajo del motor, donde se simula la neutralización del chorro del plasma por medio de un modelo de cátodo volumétrico. Sin abordar el estudio detallado de la turbulencia del plasma, se implementan modelos sencillos de ajuste de la difusión anómala de Bohm, que permiten reproducir los valores experimentales del potencial y la temperatura del plasma, así como la corriente de descarga del motor. En cuanto a los aspectos teóricos, se hace especial énfasis en la interacción plasma-pared y en la dinámica de los electrones secundarios libres en el interior del plasma, cuestiones que representan hoy en día problemas abiertos en la simulación de los motores Hall. Los nuevos modelos desarrollados buscan una imagen más fiel a la realidad. Así, se implementa el modelo de vaina de termalización parcial, que considera una función de distribución no-Maxwelliana para los electrones primarios y contabiliza unas pérdidas energéticas más cercanas a la realidad. Respecto a los electrones secundarios, se realiza un estudio cinético simplificado para evaluar su grado de confinamiento en el plasma, y mediante un modelo fluido en el límite no-colisional, se determinan las densidades y energías de los electrones secundarios libres, así como su posible efecto en la ionización. El resultado obtenido muestra que los electrones secundarios se pierden en las paredes rápidamente, por lo que su efecto en el plasma es despreciable, no así en las vainas, donde determinan el salto de potencial. Por último, el trabajo teórico y de simulación numérica se complementa con el trabajo experimental realizado en el Pnnceton Plasma Physics Laboratory, en el que se analiza el interesante transitorio inicial que experimenta el motor en el proceso de arranque. Del estudio se extrae que la presencia de gases residuales adheridos a las paredes juegan un papel relevante, y se recomienda, en general, la purga completa del motor antes del modo normal de operación. El resultado final de la investigación muestra que el código híbrido desarrollado representa una buena herramienta de simulación de un motor Hall. Reproduce adecuadamente la física del motor, proporcionando resultados similares a los experimentales, y demuestra ser un buen laboratorio numérico para estudiar el plasma en el interior del motor. Abstract Electric propulsion is today a very competitive technology and has a great projection into the future. Among the various existing plasma thrusters, the Hall effect thruster has acquired a considerable maturity and constitutes an ideal means of propulsion for a wide range of missions. In the present Thesis only Hall thrusters with conventional geometry and dielectric walls are studied. The complex interaction between multiple physical phenomena makes difficult the plasma simulation in these engines. Hybrid models are those representing a better compromise between precision and computational cost. They use a fluid model for electrons and Particle-In-Cell (PIC) algorithms for ions and neutrals. The hypothesis of plasma quasineutrality is invoked, which requires to solve separately the sheaths formed around the chamber walls. On the basis of an existing hybrid code, called HPHall-2, the aim of this doctoral Thesis is to develop an advanced hybrid code that better simulates the plasma discharge in a Hall effect thruster. Updates and improvements of the code include both theoretical and numerical issues. The extensive revision of the algorithms has succeeded in reducing the accuracy errors in one order of magnitude, and the consistency and robustness of the code have been notably increased, allowing the simulation of the thruster in a wide range of conditions. The most relevant achievements related to the particle subcode are: the implementation of a new weighing algorithm that determines more accurately the plasma flux magnitudes; the implementation of a new algorithm to control the particle population, assuring enough number of particles near the chamber walls, where there are strong gradients and the conditions to perform good computations are more critical; improvements in the mass and energy balances; and a new algorithm to compute the electric field in a non-uniform mesh. It deserves special attention the fulfilment of the Bohm condition at the edge of the sheath, which represents a boundary condition necessary to match consistently the hybrid code solution with the plasma-wall interaction, and remained as a question unsatisfactory solved in the HPHall-2 code. In this Thesis, the kinetic Bohm criterion has been implemented for an ion particle population with different electric charges and a large dispersion in their velocities. In the code, the fulfilment of the kinetic Bohm condition is accomplished by an algorithm that introduces a thin non-collisional layer next to the sheaths, producing the ion acceleration, and measures properly the flux of particles in time and space. The improvements made in the electron subcode increase the code simulation capabilities, specially in the region downstream of the thruster, where the neutralization of the plasma jet is simulated using a volumetric cathode model. Without addressing the detailed study of the plasma turbulence, simple models for a parametric adjustment of the anomalous Bohm difussion are implemented in the code. They allow to reproduce the experimental values of the plasma potential and the electron temperature, as well as the discharge current of the thruster. Regarding the theoretical issues, special emphasis has been made in the plasma-wall interaction of the thruster and in the dynamics of free secondary electrons within the plasma, questions that still remain unsolved in the simulation of Hall thrusters. The new developed models look for results closer to reality, such as the partial thermalization sheath model, that assumes a non-Maxwellian distribution functions for primary electrons, and better computes the energy losses at the walls. The evaluation of secondary electrons confinement within the chamber is addressed by a simplified kinetic study; and using a collisionless fluid model, the densities and energies of free secondary electrons are computed, as well as their effect on the plasma ionization. Simulations show that secondary electrons are quickly lost at walls, with a negligible effect in the bulk of the plasma, but they determine the potential fall at sheaths. Finally, numerical simulation and theoretical work is complemented by the experimental work carried out at the Princeton Plasma Physics Laboratory, devoted to analyze the interesting transitional regime experienced by the thruster in the startup process. It is concluded that the gas impurities adhered to the thruster walls play a relevant role in the transitional regime and, as a general recomendation, a complete purge of the thruster before starting its normal mode of operation it is suggested. The final result of the research conducted in this Thesis shows that the developed code represents a good tool for the simulation of Hall thrusters. The code reproduces properly the physics of the thruster, with results similar to the experimental ones, and represents a good numerical laboratory to study the plasma inside the thruster.
Resumo:
The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario.
Resumo:
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.
Resumo:
As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.
Resumo:
This paper presents a simple gravity evaluation model for large reflector antennas and the experimental example for a case study of one uplink array of 4x35-m antennas at X and Ka band. This model can be used to evaluate the gain reduction as a function of the maximum gravity distortion, and also to specify this at system designer level. The case study consists of one array of 35-m antennas for deep space missions. Main issues due to the gravity effect have been explored with Monte Carlo based simulation analysis.
Resumo:
Tethered spacecraft missions to the Jovian system suit the use of electrodynamic tethers because: 1) magnetic stresses are 100 times greater than at the Earth; 2) the stationary orbit is one-third the relative distance for Earth; and 3) moon Io is a nearby giant plasma source. The (bare) tether is a reinforced aluminum foil with tens of kilometer length L and a fraction of millimeter thickness h, which collects electrons as an efficient Langmuir probe and can tap Jupiter’s rotational energy for both propulsion and power. In this paper, the critical capture operation is explicitly formulated in terms of orbit geometry and established magnetic and thermal plasma models. The design parameters L and h and capture perijove radius rp face opposite criteria independent of tape width. Efficient capture requires a low rp and a high L 3/2/h ratio. However, combined bounds on tether bowing and tether tensile stress, arising from a spin made necessary by the low Jovian gravity gradient, require a high rp and a low L 5/2/h ratio. Bounds on tether temperature again require a high rp and a low L 3/8/(tether emissivity)1/4 ratio. Optimal design values are discussed.
Resumo:
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions
Resumo:
Implantación de la Red de Alta velocidad Ferroviaria en California. Tramo Fresno-Los Angeles-San Diego. Este artículo, tercera parte de la serie que describe la red de Alta Velocidad Ferroviaria de California (CHSRS), se ocupa de la línea Fresno-Los Angeles Airport-San Diego Airport, con el trazado propuesto en la Alternativa Missions Trail del Proyecto FARWEST, caracterizada por el paso directo de las montañas de Tehachapi, mediante dos grandes túneles de 27,5 Km (17 mile) y 25,6 Km (15,9 mile) de longitud. También por el emplazamiento de la estación terminal de Los Angeles, junto al Aeropuerto Internacional de Los Angeles y la sustitución de la circunvalación ferroviaria de la aglomeración urbana de Los Angeles, a través de Inland Empire, por el ramal Anaheim-Riverside, que da acceso a esa región, y que es cabecera de la futura Dessert Express a Las Vegas. The third of a series describing the California High Speed Railway (CHSRS), this article refers to the Fresno-Los Angeles Airport-San Diego Airport line, with the alignment as proposed in the Missions Trail Alternative of the FARWEST Project, characterized by the direct Tehachapi mountain pass through two large tunnels 27.5 Km (17 miles) and 25.6 Km (15.9 miles) long and also to the siting of the Los Angeles terminal station next to the Los Angeles International Airport and the replacement of the Los Angeles urban conglomeration railway by-pass through Inland Empire, by the Anaheim-Riverside branch providing access to that region and which is the head of the future Desert Express to Las Vegas.
Resumo:
Wave radiation by a conductor carrying a steady current in both a polar, highly eccentric, low perijove orbit, as in NASA's planned Juno mission, and an equatorial low Jovian orbit (LJO) mission below the intense radiation belts, is considered. Both missions will need electric power generation for scientific instruments and communication systems. Tethers generate power more efficiently than solar panels or radioisotope power systems (RPS). The radiation impedance is required to determine the current in the overall tether circuit. In a cold plasma model, radiation occurs mainly in the Alfven and fast magnetosonic modes, exhibiting a large refraction index. The radiation impedance of insulated tethers is determined for both modes and either mission. Unlike the Earth ionospheric case, the low-density, highly magnetized Jovian plasma makes the electron gyrofrequency much larger than the plasma frequency; this substantially modifies the power spectrum for either mode by increasing the Alfven velocity. Finally, an estimation of the radiation impedance of bare tethers is considered. In LJO, a spacecraft orbiting in a slow downward spiral under the radiation belts would allow determining magnetic field structure and atmospheric composition for understanding the formation, evolution, and structure of Jupiter. Additionally, if the cathodic contactor is switched off, a tether floats electrically, allowing e-beam emission that generate auroras. On/off switching produces bias/current pulses and signal emission, which might be used for Jovian plasma diagnostics.
Resumo:
A sounding rocket experiment is proposed to carry out two experiments by the conductive bare-tether; 1) the test of the OML (Orbital-Motion-Limited) theory to collect electron, and II) the test of techniques to determine (neutral) density profile in critical E-layer. The main driver of the mission is provide a space tether technology experiment in low-Earth-Orbit (LEO) deploying a long tape tether in space and verify the performance of the bare electrodynamic tape tether. The sounding rocket experiment will show no danger to other satellites as the tether missions YES1, SEDSAT, and ProCEDS, which is cancelled just for afraid of collision with the ISS orbit. Also, the sounding rocket mission is possible to demonstrate the bare tether technology in low cost, simple mission concept, fast realization for space structures. The present sounding rocket experiment is expected to be the first conductive bare tether experiment.
Resumo:
Scientific missions constitute fundamental cornerstones of space agencies such as ESA and NASA. Modern astronomy could not be understood without the data provided by these missions. Scientists need to design very carefully onboard instruments. Payloads have to survive the crucial launch moment and later perform well in the really harsh space environ-ment. It is very important that the instrument conceptual idea can be engineered to sustain all those loads
Resumo:
Relatively short electrodynamic tethers can extract orbital energy to "push" against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The Propulsive Small Expendable Deployer System experiment will use the flight-proven Small Expendable Deployer System to deploy a 5-km bare aluminum tether from a Delta II upper stage to achieve ~0.4-N drag thrust, thus lowering the altitude of the stage. The experiment will use a predominantly bare tether for current collection in lieu of the endmass collector and insulated tether used on previous missions. The flight experiment is a precursor to a more ambitious electrodynamic tether upper-stage demonstration mission that will be capable of orbit-raising,lowering, and inclination changes, all using electrodynamic thrust. The expected performance of the tether propulsion system during the experiment is described.
Resumo:
Performances, design criteria, and system mass of bare tethers for satellite deorbiting missions are analyzed. Orbital conditions and tether cross section define a tether length, such that 1) shorter tethers are electron collecting practically in their whole extension and 2) longer tethers collect practically the short-circuit current in a fixed segment length. Long tethers have a higher drag efficiency (defined as the drag force vs the tether mass) and are better adapted to adverse plasma densities. Dragging efficiency and mission-related costs are used to define design criteria for tether geometry. A comparative analysis with electric thrusters shows that bare tethers have much lower costs for low- and midinclination orbits and remain an attractive option up to 70 deg.
Resumo:
Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.
Resumo:
In hostile environments at CERN and other similar scientific facilities, having a reliable mobile robot system is essential for successful execution of robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy. Because of environmental constraints, such mobile robots are usually battery-powered and hence energy management and optimization is one of the key challenges in this field. The ability to know beforehand the energy consumed by various elements of the robot (such as locomotion, sensors, controllers, computers and communication) will allow flexibility in planning or managing the tasks to be performed by the robot.