Energy Analysis of Bare Electrodynamic Tethers
Data(s) |
01/01/2011
|
---|---|
Resumo |
The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.T.S.I. Aeronáuticos (UPM) |
Relação |
http://oa.upm.es/15305/1/sanjurjo.pdf http://arc.aiaa.org/doi/abs/10.2514/1.48168 info:eu-repo/semantics/altIdentifier/doi/10.2514/1.48168 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Journal of Propulsion And Power, ISSN 0748-4658, 2011-01, Vol. 27, No. 1 |
Palavras-Chave | #Astronomía #Aeronáutica |
Tipo |
info:eu-repo/semantics/article Artículo PeerReviewed |