949 resultados para Information search – models
Resumo:
F. Smith and Q. Shen. Fault identification through the combination of symbolic conflict recognition and Markov Chain-aided belief revision. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(5):649-663, 2004.
Resumo:
Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Empresariais.
Resumo:
We propose the development of a world wide web image search engine that crawls the web collecting information about the images it finds, computes the appropriate image decompositions and indices, and stores this extracted information for searches based on image content. Indexing and searching images need not require solving the image understanding problem. Instead, the general approach should be to provide an arsenal of image decompositions and discriminants that can be precomputed for images. At search time, users can select a weighted subset of these decompositions to be used for computing image similarity measurements. While this approach avoids the search-time-dependent problem of labeling what is important in images, it still holds several important problems that require further research in the area of query by image content. We briefly explore some of these problems as they pertain to shape.
Resumo:
We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.
Resumo:
The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.
Resumo:
Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.
Resumo:
Much work has been done on learning from failure in search to boost solving of combinatorial problems, such as clause-learning and clause-weighting in boolean satisfiability (SAT), nogood and explanation-based learning, and constraint weighting in constraint satisfaction problems (CSPs). Many of the top solvers in SAT use clause learning to good effect. A similar approach (nogood learning) has not had as large an impact in CSPs. Constraint weighting is a less fine-grained approach where the information learnt gives an approximation as to which variables may be the sources of greatest contention. In this work we present two methods for learning from search using restarts, in order to identify these critical variables prior to solving. Both methods are based on the conflict-directed heuristic (weighted-degree heuristic) introduced by Boussemart et al. and are aimed at producing a better-informed version of the heuristic by gathering information through restarting and probing of the search space prior to solving, while minimizing the overhead of these restarts. We further examine the impact of different sampling strategies and different measurements of contention, and assess different restarting strategies for the heuristic. Finally, two applications for constraint weighting are considered in detail: dynamic constraint satisfaction problems and unary resource scheduling problems.
Resumo:
The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.
Effectuation and its implications for socio-technical design science research in information systems
Resumo:
We study the implications of the effectuation concept for socio-technical artifact design as part of the design science research (DSR) process in information systems (IS). Effectuation logic is the opposite of causal logic. Ef-fectuation does not focus on causes to achieve a particular effect, but on the possibilities that can be achieved with extant means and resources. Viewing so-cio-technical IS DSR through an effectuation lens highlights the possibility to design the future even without set goals. We suggest that effectuation may be a useful perspective for design in dynamic social contexts leading to a more dif-ferentiated view on the instantiation of mid-range artifacts for specific local ap-plication contexts. Design science researchers can draw on this paper’s conclu-sions to view their DSR projects through a fresh lens and to reexamine their re-search design and execution. The paper also offers avenues for future research to develop more concrete application possibilities of effectuation in socio-technical IS DSR and, thus, enrich the discourse.
Resumo:
This study tested a developmental cascade model of peer rejection, social information processing (SIP), and aggression using data from 585 children assessed at 12 time points from kindergarten through Grade 3. Peer rejection had direct effects on subsequent SIP problems and aggression. SIP had direct effects on subsequent peer rejection and aggression. Aggression had direct effects on subsequent peer rejection. Each construct also had indirect effects on each of the other constructs. These findings advance the literature beyond a simple mediation approach by demonstrating how each construct effects changes in the others in a snowballing cycle over time. The progressions of SIP problems and aggression cascaded through lower liking, and both better SIP skills and lower aggression facilitated the progress of social preference. Findings are discussed in terms of the dynamic, developmental relations among social environments, cognitions, and behavioral adjustment.