991 resultados para Implant supported prosthesis
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.
Resumo:
Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.
Resumo:
The inclusion of granular columns in soft clay deposits leads to improvements in bearing capacity and overall stiffness along with a reduction in consolidation settlement. Many laboratory investigations have focused on aspects of bearing capacity, but published data on settlement performance is limited. This paper reports on some interesting findings obtained from a laboratory model study in respect of these issues. In this investigation, 300 mm diameter by 400 mm long samples of soft kaolin clay were reinforced with single or multiple granular columns of various lengths using the displacement and replacement installation methods. The experimental findings revealed that, for the same area replacement ratio, limited settlement reduction was achieved for single long floating columns and end-bearing column groups. Marginal improvements in settlement performance were also achieved for columns installed by the displacement method. No settlement reduction was achieved for short single floating columns while short floating granular column groups produced increased settlements. These observations were verified using contact pressure measurements between the footing and column/surrounding clay.
Resumo:
An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in the surface area, the ordered mesoporous structure of SBA-15 was largely retained. Metal chlorides dispersed in such ionic liquid film are able to convert glucose to HMF with much higher yields as is possible in the aqueous phase. The reactivity order CrCl > AlCl > CuCl > FeCl is similar to the order in the ionic liquid solvent, yet the selectivity are lower. The HMF yield of the most promising CrCl-Im-SBA-15 can be improved by using a HO:DMSO mixture as the reaction medium and a 2-butanol/MIBK extraction layer. Different attempts to decrease metal chloride leaching by using different solvents are described. © 2013 American Institute of Chemical Engineers Environ Prog.
Resumo:
OBJECTIVE:
This study aimed to investigate antimicrobial treatment of an infected cochlear implant, undertaken in an attempt to salvage the infected device.
METHODS:
We used the broth microdilution method to assess the susceptibility of meticillin-sensitive Staphylococcus aureus isolate, cultured from an infected cochlear implant, to common antimicrobial agents as well as to novel agents such as tea tree oil. To better simulate in vivo conditions, where bacteria grow as microcolonies encased in glycocalyx, the bactericidal activity of selected antimicrobial agents against the isolate growing in biofilm were also compared.
RESULTS:
When grown planktonically, the S aureus isolate was susceptible to 17 of the 18 antimicrobials tested. However, when grown in biofilm, it was resistant to all conventional antimicrobials. In contrast, 5 per cent tea tree oil completely eradicated the biofilm following exposure for 1 hour.
CONCLUSION:
Treatment of infected cochlear implants with novel agents such as tea tree oil could significantly improve salvage outcome.
Resumo:
In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price.
Resumo:
Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.