929 resultados para INTRACELLULAR STORES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxovanadium(IV) catecholates of terpyridyl bases, viz. VO(cat)(L)] (L - phtpy, 1; stpy, 2) and VO(dopa-NBD)(L)] (L = phtpy, 3; stpy, 4), where cat is benzene-1,2-diolate, dopa-NBD is 4-(2-(4-nitrobenzoc]1,2,5]oxadiazol-7-ylamino)ethyl)benzene-1,2-di olate, phtpy is (4'-phenyl)-2,2':6',2 `'-terpyridine and stpy is (2,2':6',2 `'-terpyridin-4'-oxy)ethyl-beta-D-glucopyranoside, were prepared and characterized, and their DNA binding, DNA photo-cleavage activity, photocytotoxicity in red light (600-720 nm), cellular uptake and intracellular localization behaviour were studied. The complexes showed an intense ligand-to-metal charge transfer (LMCT) band at similar to 500 nm. The sugar appended complexes 2 and 4 showed significant uptake into the cancer cells. The dopa-NBD complexes 3 and 4 showing green emission were used for cellular imaging. The complexes showed diffused cellular localization mainly in the cytosol and to a lesser extent into the nucleus as evidenced from the confocal microscopy study. Complexes 1-4 showed significant photocytotoxicity in the PDT spectral window giving low IC50 values, while remaining relatively non-toxic in dark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro-to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, a majority of the myofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed `form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid coated mesoporous silica nanoparticle (L-MSN) were synthesized for oral delivery of ciprofloxacin for intracellular elimination of Salmonella pathogen. The particle size was found to be between 50-100 nm with a lipid coat of approximately 5 nm thickness. The lipid coating was achieved by sonication of liposomes with the MSN particles and evaluated by CLSMand FTIR studies. The L-MSN particles exhibited lower cytotoxicity compared to bare MSN particles. Ciprofloxacin, a fluoroquinolone antibiotic, loaded into the L-MSN particles showed enhanced antibacterial activity against free drug in in vitro assays. The lipid coat was found to aid in intravacuolar targeting of the drug cargo as observed by confocal microscopy studies. We also observed that a lower dose of antibiotic was sufficient to clear the pathogen from mice and increase their survivability using the L-MSN oral delivery system.