962 resultados para INDUSTRIAL DEVELOPMENT
Resumo:
The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.
Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.
Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.
Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.
Resumo:
In global engineering enterprises, information and knowledge sharing are critical factors that can determine a project’s success. This statement is widely acknowledged in published literature. However, according to some academics, tacit knowledge is derived from a person’s lifetime of experience, practice, perception and learning, which makes it hard to capture and document in order to be shared. This project investigates if social media tools can be used to improve and enable tacit knowledge sharing within a global engineering enterprise. This paper first provides a brief background of the subject area, followed by an explanation of the industrial investigation, from which the proposed knowledge framework to improve tacit knowledge sharing is presented. This project’s main focus is on the improvement of collaboration and knowledge sharing amongst product development engineers in order to improve the whole product development cycle.
Resumo:
The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.
Resumo:
The thermoforming industry has been relatively slow to embrace modern measurement technologies. As a result researchers have struggled to develop accurate thermoforming simulations as some of the key aspects of the process remain poorly understood. For the first time, this work reports the development of a prototype multivariable instrumentation system for use in thermoforming. The system contains sensors for plug force, plug displacement, air pressure and temperature, plug temperature, and sheet temperature. Initially, it was developed to fit the tooling on a laboratory thermoforming machine, but later its performance was validated by installing it on a similar industrial tool. Throughout its development, providing access for the various sensors and their cabling was the most challenging task. In testing, all of the sensors performed well and the data collected has given a powerful insight into the operation of the process. In particular, it has shown that both the air and plug temperatures stabilize at more than 80C during the continuous thermoforming of amorphous polyethylene terephthalate (aPET) sheet at 110C. The work also highlighted significant differences in the timing and magnitude of the cavity pressures reached in the two thermoforming machines. The prototype system has considerable potential for further development.
Resumo:
The semiconductor industry's urge towards faster, smaller and cheaper integrated circuits has lead the industry to smaller node devices. The integrated circuits that are now under volume production belong to 22 nm and 14 nm technology nodes. In 2007 the 45 nm technology came with the revolutionary high- /metal gate structure. 22 nm technology utilizes fully depleted tri-gate transistor structure. The 14 nm technology is a continuation of the 22 nm technology. Intel is using second generation tri-gate technology in 14 nm devices. After 14 nm, the semiconductor industry is expected to continue the scaling with 10 nm devices followed by 7 nm. Recently, IBM has announced successful production of 7 nm node test chips. This is the fashion how nanoelectronics industry is proceeding with its scaling trend. For the present node of technologies selective deposition and selective removal of the materials are required. Atomic layer deposition and the atomic layer etching are the respective techniques used for selective deposition and selective removal. Atomic layer deposition still remains as a futuristic manufacturing approach that deposits materials and lms in exact places. In addition to the nano/microelectronics industry, ALD is also widening its application areas and acceptance. The usage of ALD equipments in industry exhibits a diversi cation trend. With this trend, large area, batch processing, particle ALD and plasma enhanced like ALD equipments are becoming prominent in industrial applications. In this work, the development of an atomic layer deposition tool with microwave plasma capability is described, which is a ordable even for lightly funded research labs.
Professional Practice in Learning and Development: How to Design and Deliver Plans for the Workplace
Resumo:
Introduction The world is changing! It is volatile, uncertain, complex and ambiguous. As cliché as it may sound the evidence of such dynamism in the external environment is growing. Business-as-usual is more of the exception than the norm. Organizational change is the rule; be it to accommodate and adapt to change, or instigate and lead change. A constantly changing environment is a situation that all organizations have to live with. What makes some organizations however, able to thrive better than others? Many scholars and practitioners believe that this is due to the ability to learn. Therefore, this book on developing Learning and Development (L&D) professionals is timely as it explores and discusses trends and practices that impact organizations, the workforce and L&D professionals. Being able to learn and develop effectively is the cornerstone of motivation as it helps to address people’s need to be competent and to be autonomous (Deci & Ryan, 2002; Loon & Casimir, 2008; Ryan & Deci, 2000). L&D stimulates and empowers people to perform. Organizations that are better at learning at all levels; the individual, group and organizational level, will always have a better chance of surviving and performing. Given the new reality of a dynamic external environment and constant change, L&D professionals now play an even more important role in their organizations than ever before. However, L&D professionals themselves are not immune to the turbulent changes as their practices are also impacted. Therefore, the challenges that L&D professionals face are two-pronged. Firstly, in relation to helping and supporting their organization and its workforce in adapting to the change, whilst, secondly developing themselves effectively and efficiently so that they are able to be one-step ahead of the workforce that they are meant to help develop. These challenges are recognised by the CIPD, as they recently launched their new L&D qualification that has served as an inspiration for this book. L&D plays a crucial role at both strategic (e.g. organizational capability) and operational (e.g. delivery of training) levels. L&D professionals have moved from being reactive (e.g. following up action after performance appraisals) to being more proactive (e.g. shaping capability). L&D is increasingly viewed as a driver for organizational performance. The CIPD (2014) suggest that L&D is increasingly expected to not only take more responsibility but also accountability for building both individual and organizational knowledge and capability, and to nurture an organizational culture that prizes learning and development. This book is for L&D professionals. Nonetheless, it is also suited for those studying Human Resource Development HRD at intermediate level. The term ‘Human Resource Development’ (HRD) is more common in academia, and is largely synonymous with L&D (Stewart & Sambrook, 2012) Stewart (1998) defined HRD as ‘the practice of HRD is constituted by the deliberate, purposive and active interventions in the natural learning process. Such interventions can take many forms, most capable of categorising as education or training or development’ (p. 9). In fact, many parts of this book (e.g. Chapters 5 and 7) are appropriate for anyone who is involved in training and development. This may include a variety of individuals within the L&D community, such as line managers, professional trainers, training solutions vendors, instructional designers, external consultants and mentors (Mayo, 2004). The CIPD (2014) goes further as they argue that the role of L&D is broad and plays a significant role in Organizational Development (OD) and Talent Management (TM), as well as in Human Resource Management (HRM) in general. OD, TM, HRM and L&D are symbiotic in enabling the ‘people management function’ to provide organizations with the capabilities that they need.
Resumo:
Augmented Reality (AR) is currently gaining popularity in multiple different fields. However, the technology for AR still requires development in both hardware and software when considering industrial use. In order to create immersive AR applications, more accurate pose estimation techniques to define virtual camera location are required. The algorithms for pose estimation often require a lot of processing power, which makes robust pose estimation a difficult task when using mobile devices or designated AR tools. The difficulties are even larger in outdoor scenarios where the environment can vary a lot and is often unprepared for AR. This thesis aims to research different possibilities for creating AR applications for outdoor environments. Both hardware and software solutions are considered, but the focus is more on software. The majority of the thesis focuses on different visual pose estimation and tracking techniques for natural features. During the thesis, multiple different solutions were tested for outdoor AR. One commercial AR SDK was tested, and three different custom software solutions were developed for an Android tablet. The custom software solutions were an algorithm for combining data from magnetometer and a gyroscope, a natural feature tracker and a tracker based on panorama images. The tracker based on panorama images was implemented based on an existing scientific publication, and the presented tracker was further developed by integrating it to Unity 3D and adding a possibility for augmenting content. This thesis concludes that AR is very close to becoming a usable tool for professional use. The commercial solutions currently available are not yet ready for creating tools for professional use, but especially for different visualization tasks some custom solutions are capable of achieving a required robustness. The panorama tracker implemented in this thesis seems like a promising tool for robust pose estimation in unprepared outdoor environments.
Resumo:
The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.
Resumo:
La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.
Resumo:
This project, realized at the company ABER Ltd, describes the process followed for the developing of an electronic control system for a hydraulic elevator. The previous control system was based on relay logic, and the company wanted to change it to a microcontroller based technology. To do so, different approaches were studied and finally the selected technology for the development was the Raspberry Pi. After, the software needed for all the elevator types was developed, and the interface hardware was selected. In the end, several test were made to adjust the software and the hardware and to prove the good operation of the system.
Resumo:
A presente dissertação apresenta uma investigação teórica e prática na área de Engenharia e Design de Produto com o objetivo principal de desenvolver um Flotador Industrial para a Adventech, procurando indicadores inovadores, competitivos e focando a necessidade de encontrar uma solução que reflita numa relação entre necessidade, utilizador, performance e design. Desta forma, no presente trabalho cruzam-se temas como a Engenharia e o Design de Produto, Tratamentos de Efluentes Líquidos e Flotação de modo a introduzir e compreender o desenvolvimento deste equipamento. Foi efetuada uma pesquisa sobre o tema para compreender, as suas características e limitações, bem como as formas e mecanismos utilizados para dar resposta aos requisitos e produzir um produto eficiente e eficaz. Paralelamente realizou-se uma abordagem teórica sobre Design de Produto e Processo de Flotação, de modo a conhecer o seu desenvolvimento e as suas restrições, preocupações e objetivos. Complementou-se o trabalho desenvolvido com pesquisa e analisaram-se os produtos existentes na concorrência com o objetivo de conhecer características técnicas, funcionais e físicas. Desta forma, o estudo desenvolvido nesta dissertação serviu e auxiliou o projeto no resultado final, incluindo a materialização do conceito para proporcionar uma boa relação entre utilizador, performance e design. Obtendo assim, um resultado final com características adequadas nas diversas aplicações deste produto nas Estações de Águas Residuais, reduzindo custos de operação e manutenção, eficiência do processo de flotação e vida útil do produto. Paralelamente o design proporciona uma apresentação estética do produto que transmite fiabilidade e profissionalismo.
Resumo:
Carne do alguidar is a Portuguese traditional pork fried meat, usually manufactured for self-consumption purposes. This study developed a ready-to-eat (RTE) meat product, to meet today's consumers’ convenience, manufactured at the industrial scale evaluating its quality and shelf-life, assessing the effect of vacuum packaging and the use of an antioxidant (50 ppm BHT) to enhance oxidative stability. Physicochemical and microbiological parameters were assessed and a sensory analysis was performed. Interestingly, no significant differences were recorded between control (non-BHT) and antioxidant (BHT) samples. Microbiological counts remained at low levels throughout the storage period, ensuring the product’s required microbiological quality. At later storage stages, higher values of thiobarbituric acid reactive substances arose and off flavours and aromas were perceived. Still, overall appreciation was not affected until 12 months storage and a significant depreciation was perceived only after 15 months. Fibrousness and rising of off flavours were negatively correlated with overall appreciation.
Resumo:
BACKGROUND: Today, new lifestyles, higher incomes and consumer awareness are creating consumer demand for a year-round supply of high-quality, diverse and innovative food products. However, when it comes to innovation, the food sector is less changeable when compared to other sectors, such as high technology. Still, in the past decades much and important developments have been achieved in several areas related to foods and the food industry. METHODS: A systematic review of scientific literature was conducted on Science Direct. The topics investigated were: aspects related to innovation in food development (such as the transfer of innovation, open innovation, collaborative innovation and consumer perception and its role in the developing process); the innovation in the food industry (particularly regarding the processing technologies and packaging, which are two prominent areas of innovation in this sector nowadays); the innovation in the cooking sector (particularly in regards to the molecular gastronomy and science based cooking). RESULTS: A total of 146 articles were included in the review and the aspects focused allowed confirming that innovation has been recognized as a key driver of economic growth. Within the framework of ‘open innovation’, a number of key issues related to the acquisition of external knowledge in food technology must be taken into consideration. Food product development is highly dependent on the consumer perception and acceptance, and hence it is of utmost importance to include the consumer in the development process to minimize failure probabilities. The sectors of the food industry where important developments and innovation are registered include the processing technologies and the packaging systems, where the latest progresses have produced very significant outcomes. CONCLUSION: The present work allowed verifying the latest improvements and trend towards food product development from two perspectives, the product itself and the industrial processing. This sector is undoubtedly a major key for the success and competitiveness nowadays in the food industry.
Resumo:
High quality, well designed medical devices are necessary to provide safe and effective clinical care for patients as well as to ensure the health and safety of professional and lay device users. Capturing the user requirements of users and incorporating these into design is an essential component of this. The field of ergonomics has an opportunity to assist, not only with this area, but also to encourage a more general consideration of the user during medical device development. A review of the literature on methods for assessing user requirements in engineering and ergonomics found that little published work exists on the ergonomics aspects of medical device development. In particular there is little advice available to developers on which issues to consider during design and development or recommendations for good practice in terms of the methods and approaches needed to capture the full range of user requirements. The Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) is a research collaboration that is working in conjunction with industrial collaborators to apply ergonomics methods to real case study projects with the ultimate aim of producing an industry-focused guide to applying ergonomics principles in medical device development.