969 resultados para INDIAN OCEAN VARIABILITY


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ntegrated terrestrial and marine records of northeast African vegetation are needed to provide long high resolution records of environmental variability with established links to specific terrestrial environments. In this study, we compare records of terrestrial vegetation preserved in marine sediments in the Gulf of Aden [Deep Sea Drilling Project (DSDP) Site 231] and an outcrop of lacustrine sediments in the Turkana Basin, Kenya, part of the East African Rift System. We analyzed higher plant biomarkers in sediments from both deposits of known equivalent age, corresponding to a ca. 50-100 ka humid interval prior to the b-Tulu Bor eruption ca. 3.40 Ma, when the Lokochot Lake occupied part of the Turkana Basin. Molecular abundance distributions indicate that long chain n-alkanoic acids in marine sediments are the most reliable proxy for terrestrial vegetation (Carbon Preference Index, CPI = 4.5), with more cautious interpretation needed for n-alkanes and lacustrine archives. Marine sediments record carbon isotopic variability in terrestrial biomarkers of 2-3 per mil, roughly equivalent to 20% variability in the C3/C4 vegetation contribution. The proportion of C4 vegetation apparently increased at times of low terrigenous dust input. Terrestrial sediments reveal much larger (2-10 per mil) shifts in n-alkanoic acid delta13C values. However, molecular abundance and isotopic composition suggest that microbial sources may also contribute fatty acids, contaminating the lacustrine sedimentary record of terrestrial vegetation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The terrigenous fraction of sediments from a deep-sea sediment core recovered from the northwestern Western Australian continental slope offshore North West Cape, SE Indian Ocean, reveals a history of Western Australian climate throughout the last 550 ka. End-member modelling of a data set of grain-size distributions (n = 438) of the terrigenous sediment fraction allows to interpret the record in terms of aeolian and fluvial sediment deposition, both related to palaeo-environmental conditions in the North West Cape area. The data set can be best described by two aeolian end members and one fluvial one. Changes in the ratio of the two aeolian end members over the fluvial one are interpreted as aridity variations in northwestern Western Australia. These grain-size data are compared with bulk geochemical data obtained by XRF scans of the core. Log-ratios of the elements Zr/Fe and Ti/Ca, which indicate a terrigenous origin, corroborate the grain-size data. We postulate that the mid- to late Quaternary near North West Cape climate was relatively arid during the glacial and relatively humid during the interglacial stages, owing to meridional shifts in the atmospheric circulation system. Opposite to published palaeo-environmental records from the same latitude (20°S) offshore Chile and offshore Namibia, the Australian aridity record does not show the typical southern hemisphere climate variability of humid glacials and dry interglacials, which we interpret to be the result of the relatively large land mass of the Australian continent, which emphasises a strong monsoonal climatic system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The iterative evolutionary radiation of planktic foraminifers is a well-documented macroevolutionary process. Here we document the accompanying size changes in entire planktic foraminiferal assemblages for the past 70 My and their relationship to paleoenvironmental changes. After the size decrease at the Cretaceous/Paleogene (K/P) boundary, high latitude assemblages remained consistently small. Size evolution in low latitudes can be divided into three major phases: the first is characterized by dwarfs (65-42 Ma), the second shows moderate size fluctuations (42-14 Ma), and in the third phase, planktic foraminifers have grown to the unprecedented sizes observed today. Our analyses of size variability with paleoproxy records indicate that periods of size increase coincided with phases of global cooling (Eocene and Neogene). These periods were characterized by enhanced latitudinal and vertical temperature gradients in the oceans and high diversity (polytaxy). In the Paleocene and during the Oligocene, the observed (minor) size changes of the largely low-diversity (oligotaxic) assemblages seem to correlate with productivity changes. However, polytaxy per se was not responsible for larger test sizes.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the Antarctic Circumpolar Current crosses the South-West Indian Ocean Ridge, it creates an extensive eddy field characterised by high sea level anomaly variability. We investigated the diving behaviour of female southern elephant seals from Marion Island during their post-moult migrations in relation to this eddy field in order to determine its role in the animals' at-sea dispersal. Most seals dived within the region significantly more often than predicted by chance, and these dives were generally shallower and shorter than dives outside the eddy field. Mixed effects models estimated reductions of 44.33 ± 3.00 m (maximum depth) and 6.37 ± 0.10 min (dive duration) as a result of diving within the region, along with low between-seal variability (maximum depth: 5.5 % and dive duration: 8.4 %). U-shaped dives increased in frequency inside the eddy field, whereas W-shaped dives with multiple vertical movements decreased. Results suggest that Marion Island's adult female elephant seals' dives are characterised by lowered cost-of-transport when they encounter the eddy field during the start and end of their post-moult migrations. This might result from changes in buoyancy associated with varying body condition upon leaving and returning to the island. Our results do not suggest that the eddy field is a vital foraging ground for Marion Island's southern elephant seals. However, because seals preferentially travel through this area and likely forage opportunistically while minimising transport costs, we hypothesise that climate-mediated changes in the nature or position of this region may alter the seals' at-sea dispersal patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present sea surface and upper thermocline temperature records (60-100 yr temporal resolution) spanning Marine Isotope Stage 3 (~24-62 kyr BP) from IMAGES Core MD01-2378 (121°47.27'E and 13°04.95'S; 1783 m water depth) located in the outflow area of the Indonesian Throughflow within the Timor Sea. Stable isotopes and Mg/Ca of the near surface dwelling planktonic foraminifer Globigerinoides ruber (white) and the upper thermocline dwelling Pulleniatina obliquiloculata reveal rapid changes in the thermal structure of the upper ocean during Heinrich Events. Thermocline warming and increased delta18Oseawater (P. obliquiloculata record) during Heinrich Events 3, 4, and 5 reflect weakening of the relatively cool and fresh thermocline flow and reduced export of less saline water from the North Pacific and Indonesian Seas to the tropical Indian Ocean. Three main factors influenced Indonesian Throughflow variability during Marine Isotope Stage 3: (1) global slow-down in thermohaline circulation during Heinrich Events triggered by northern hemisphere cooling; (2) increased freshwater export from the Java Sea into the Indonesian Throughflow controlled by rising sea level from ~60 to 47 ka and (3) insolation related changes in Australasian monsoon with associated migration of hydrological fronts between Indian Ocean and Indonesian Throughflow derived water masses at ~46-40 ka.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mesocena elliptica Ehr. zone in deep-sea sediments of the Pacific Ocean is characterized by a short vertical range at the base of the Pleistocene section. Depending on sedimentation rate this zone lies at various depths below the ocean bottom. M. elliptica is unknown in recent oceanic plankton. In fossil state known species indicate that sediments containing them are of Oligocene-Miocene age. New data obtained in early 1960's show that within a short interval, evidently in Early Pleistocene, M. elliptica was abundant in plankton, primarily in tropical regions. Correlation of paleomagnetic data with results of diatom analysis shows that the Mesocena elliptica zone always lies above the Pliocene-Pleistocene boundary, and that maximum contents of M. elliptica coincide with the Jaramillo event (0.85-0.95 million years ago).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mesocena elliptica Ehr. zone in deep-sea sediments of the Pacific Ocean is characterized by a short vertical range at the base of the Pleistocene section. Depending on sedimentation rate this zone lies at various depths below the ocean bottom. M. elliptica is unknown in recent oceanic plankton. In fossil state known species indicate that sediments containing them are of Oligocene-Miocene age. New data obtained in early 1960's show that within a short interval, evidently in Early Pleistocene, M. elliptica was abundant in plankton, primarily in tropical regions. Correlation of paleomagnetic data with results of diatom analysis shows that the Mesocena elliptica zone always lies above the Pliocene-Pleistocene boundary, and that maximum contents of M. elliptica coincide with the Jaramillo event (0.85-0.95 million years ago).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.