953 resultados para Hierarchical Linear Modelling
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastro-intestinal stromal tumour (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occur in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after latest dose, were measured in 59 patients receiving Glivec® at diverse regimens, using a validated chromatographic method (HPLC-UV) developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one- compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T appears to affect the disposition of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen ! This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help to individualise the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. In this technical report, we approach one of the practical aspects when it comes to represent users' interests from their tagging activity, namely the categorization of tags into high-level categories of interest. The reason is that the representation of user profiles on the basis of the myriad of tags available on the Web is certainly unfeasible from various practical perspectives; mainly concerning the unavailability of data to reliably, accurately measure interests across such fine-grained categorisation, and, should the data be available, its overwhelming computational intractability. Motivated by this, our study presents the results of a categorization process whereby a collection of tags posted at Delicious #http://delicious.com# are classified into 200 subcategories of interest.
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
Projecte de recerca elaborat a partir d’una estada a la University of British Columbia, Canadà, entre 2010 i 2012 La malaltia d'Alzheimer (MA) representa avui la forma més comuna de demència en la població envellida. Malgrat fa 100 anys que va ser descoberta, encara avui no existeix cap tractament preventiu i/o curatiu ni cap agent de diagnòstic que permeti valorar quantitativament l'evolució d'aquesta malaltia. L'objectiu en el que s'emmarca aquest treball és contribuir a aportar solucions al problema de la manca d'agents terapèutics i de diagnosi, unívocs i rigorosos, per a la MA. Des del camp de la química bioinorgànica és fàcil fixar-se en l'excessiva concentració d'ions Zn(II) i Cu(II) en els cervells de malalts de MA, plantejar-se la seva utilització com a dianes terapèutica i, en conseqüència, cercar agents quelants que evitin la formació de plaques senils o contribueixin a la seva dissolució. Si bé aquest va ser el punt de partida d’aquest projecte, els múltiples factors implicats en la patogènesi de la MA fan que el clàssic paradigma d’ ¨una molècula, una diana¨ limiti la capacitat de la molècula de combatre aquesta malaltia tan complexa. Per tant, un esforç considerable s’ha dedicat al disseny d’agentsmultifuncionals que combatin els múltiples factors que caracteritzen el desenvolupament de la MA. En el present treball s’han dissenyat agents multifuncionals inspirats en dos esquelets moleculars ben establers i coneguts en el camp de la química medicinal: la tioflavina-T (ThT) i la deferiprona (DFP). La utilització de tècniques in silico que inclouen càlculs farmacocinètics i modelatge molecular ha estat un procés cabdal per a l’avaluació dels millors candidats en base als següents requeriments: (a) compliment de determinades propietats farmacocinètiques que estableixin el seu possible ús com a fàrmac (b) hidrofobicitat adequada per travessar la BBB i (c) interacció amb el pèptid Aen solució.
Resumo:
Aim We investigated the late Quaternary history of two closely related and partly sympatric species of Primula from the south-western European Alps, P. latifolia Lapeyr. and P. marginata Curtis, by combining phylogeographical and palaeodistribution modelling approaches. In particular, we were interested in whether the two approaches were congruent and identified the same glacial refugia. Location South-western European Alps. Methods For the phylogeographical analysis we included 353 individuals from 28 populations of P. marginata and 172 individuals from 15 populations of P. latifolia and used amplified fragment length polymorphisms (AFLPs). For palaeodistribution modelling, species distribution models (SDMs) were based on extant species occurrences and then projected to climate models (CCSM, MIROC) of the Last Glacial Maximum (LGM), approximately 21 ka. Results The locations of the modelled LGM refugia were confirmed by various indices of genetic variation. The refugia of the two species were largely geographically isolated, overlapping only 6% to 11% of the species' total LGM distribution. This overlap decreased when the position of the glacial ice sheet and the differential elevational and edaphic distributions of the two species were considered. Main conclusions The combination of phylogeography and palaeodistribution modelling proved useful in locating putative glacial refugia of two alpine species of Primula. The phylogeographical data allowed us to identify those parts of the modelled LGM refugial area that were likely source areas for recolonization. The use of SDMs predicted LGM refugial areas substantially larger and geographically more divergent than could have been predicted by phylogeographical data alone
Resumo:
Résumé Le cancer du sein est le cancer le plus commun chez les femmes et est responsable de presque 30% de tous les nouveaux cas de cancer en Europe. On estime le nombre de décès liés au cancer du sein en Europe est à plus de 130.000 par an. Ces chiffres expliquent l'impact social considérable de cette maladie. Les objectifs de cette thèse étaient: (1) d'identifier les prédispositions et les mécanismes biologiques responsables de l'établissement des sous-types spécifiques de cancer du sein; (2) les valider dans un modèle ín vivo "humain-dans-souris"; et (3) de développer des traitements spécifiques à chaque sous-type de cancer du sein identifiés. Le premier objectif a été atteint par l'intermédiaire de l'analyse des données d'expression de gènes des tumeurs, produite dans notre laboratoire. Les données obtenues par puces à ADN ont été produites à partir de 49 biopsies des tumeurs du sein provenant des patientes participant dans l'essai clinique EORTC 10994/BIG00-01. Les données étaient très riches en information et m'ont permis de valider des données précédentes des autres études d'expression des gènes dans des tumeurs du sein. De plus, cette analyse m'a permis d'identifier un nouveau sous-type biologique de cancer du sein. Dans la première partie de la thèse, je décris I identification des tumeurs apocrines du sein par l'analyse des puces à ADN et les implications potentielles de cette découverte pour les applications cliniques. Le deuxième objectif a été atteint par l'établissement d'un modèle de cancer du sein humain, basé sur des cellules épithéliales mammaires humaines primaires (HMECs) dérivées de réductions mammaires. J'ai choisi d'adapter un système de culture des cellules en suspension basé sur des mammosphères précédemment décrit et pat décidé d'exprimer des gènes en utilisant des lentivirus. Dans la deuxième partie de ma thèse je décris l'établissement d'un système de culture cellulaire qui permet la transformation quantitative des HMECs. Par la suite, j'ai établi un modèle de xénogreffe dans les souris immunodéficientes NOD/SCID, qui permet de modéliser la maladie humaine chez la souris. Dans la troisième partie de ma thèse je décris et je discute les résultats que j'ai obtenus en établissant un modèle estrogène-dépendant de cancer du sein par transformation quantitative des HMECs avec des gènes définis, identifiés par analyse de données d'expression des gènes dans le cancer du sein. Les cellules transformées dans notre modèle étaient estrogène-dépendantes pour la croissance, diploïdes et génétiquement normales même après la culture cellulaire in vitro prolongée. Les cellules formaient des tumeurs dans notre modèle de xénogreffe et constituaient des métastases péritonéales disséminées et du foie. Afin d'atteindre le troisième objectif de ma thèse, j'ai défini et examiné des stratégies de traitement qui permettent réduire les tumeurs et les métastases. J'ai produit un modèle de cancer du sein génétiquement défini et positif pour le récepteur de l'estrogène qui permet de modéliser le cancer du sein estrogène-dépendant humain chez la souris. Ce modèle permet l'étude des mécanismes impliqués dans la formation des tumeurs et des métastases. Abstract Breast cancer is the most common cancer in women and accounts for nearly 30% of all new cancer cases in Europe. The number of deaths from breast cancer in Europe is estimated to be over 130,000 each year, implying the social impact of the disease. The goals of this thesis were first, to identify biological features and mechanisms --responsible for the establishment of specific breast cancer subtypes, second to validate them in a human-in-mouse in vivo model and third to develop specific treatments for identified breast cancer subtypes. The first objective was achieved via the analysis of tumour gene expression data produced in our lab. The microarray data were generated from 49 breast tumour biopsies that were collected from patients enrolled in the clinical trial EORTC 10994/BIG00-01. The data set was very rich in information and allowed me to validate data of previous breast cancer gene expression studies and to identify biological features of a novel breast cancer subtype. In the first part of the thesis I focus on the identification of molecular apacrine breast tumours by microarray analysis and the potential imptìcation of this finding for the clinics. The second objective was attained by the production of a human breast cancer model system based on primary human mammary epithelial cells {HMECs) derived from reduction mammoplasties. I have chosen to adopt a previously described suspension culture system based on mammospheres and expressed selected target genes using lentiviral expression constructs. In the second part of my thesis I mainly focus on the establishment of a cell culture system allowing for quantitative transformation of HMECs. I then established a xenograft model in immunodeficient NOD/SCID mice, allowing to model human disease in a mouse. In the third part of my thesis I describe and discuss the results that I obtained while establishing an oestrogen-dependent model of breast cancer by quantitative transformation of HMECs with defined genes identified after breast cancer gene expression data analysis. The transformed cells in our model are oestrogen-dependent for growth; remain diploid and genetically normal even after prolonged cell culture in vitro. The cells farm tumours and form disseminated peritoneal and liver metastases in our xenograft model. Along the lines of the third objective of my thesis I defined and tested treatment schemes allowing reducing tumours and metastases. I have generated a genetically defined model of oestrogen receptor alpha positive human breast cancer that allows to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure against general (nonthreshold) adversaries.Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. A property of strongly multiplicative LSSSs that could be useful in solving this problem is proved. Namely, using a suitable generalization of the well-known Berlekamp–Welch decoder, it is shown that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, the considered open problem is to determine whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be restated in terms of representability of identically self-dual matroids by self-dual codes. A new concept is introduced, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. It is proved that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.