935 resultados para HORIZONTAL CONVECTIVE ROLLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In refrigeration systems a small amount of compressor lubricant is entrained in the refrigerant and circulated through the system, where some is retained in each component. The suction line to the compressor has the largest potential for oil retention. This paper presents results from an experimental apparatus that has been constructed to circulate POE (polyolester) oil and R410A at a controlled mass flux, OCR (oil in circulation ratio), and apparent superheat, and to directly measure the pressure drop and mass of oil retained in horizontal and vertical suction lines. The bulk vapor velocity and overall void fraction are determined from direct mass and temperature measurements. The oil retention, pressure drop, and flow regimes near the minimum ASHRAE recommended mass flux condition are explored. It was found that oil retention begins to increase sharply even above the minimum recommended flux, so conditions near the minimum should be avoided. Two relationships were developed to predict the oil retention in the vertical and horizontal suction lines. The average error from the predictions method was 10.9% for the vertical tube, and 7.9% for the horizontal tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is non-monotonic in tilt angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of convective heat transfer in enclosures under high ventilative flow rates is primarily of interest for building design and simulation purposes. Current models are based on experiments performed forty years ago with flat plates under natural convection conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental study on the evolution of carrot properties along convective drying by hot air at different temperatures (50ºC, 60ºC and 70ºC). The thermo-physical properties calculated were: specific heat, thermal conductivity, diffusivity, enthalpy, heat and mass transfer coefficients. Furthermore, the data of drying kinetics were treated and adjusted according to the three empirical models: Page, Henderson & Pabis and Logarithmic. The sorption isotherms were also determined and fitted using the GAB model. The results showed that, generally, the thermo-physical properties presented a decline during the drying process, and the decrease was faster for the temperature of 70ºC. It was possible to verify that the Page model presented the best prediction ability for the representation of kinetics of the drying process. The GAB model used to fit the sorption isotherms showed a good prediction capacity and, at a given water activity, despite some variations, the amount of water sorbed increased with the decrease of drying temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, producing ability of electricity by horizontal tidal current turbines and installing possibility of these turbines on bridge's piers in the marine environments has been studied to reduce primary implementation costs and make the plan, economical. To do this and to study its feasibility, the exerted forces from installing horizontal tidal current turbines were compared with the forces applied to the bridge structure during designing process (given in the Standards). Then, the allowable ranges of the overloading which is tolerable by the piers of the bridge were obtained. Accordingly, it is resulted that for installing these turbines, the piers of the existing bridges are required to be strengthened. Because of increasing usage of renewable powers and as a suggestion, the exerted forces from installing turbine for loading coefficients of different Standards are given. Finally as an example, preliminary designing of a horizontal tidal current turbine was carried out for Gesham Channel and the forces exerted from turbine to the bridge's pier were calculated for the future usage in order to create a test site of real dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caspian Sea with its unique characteristics is a significant source to supply required heat and moisture for passing weather systems over the north of Iran. Investigation of heat and moisture fluxes in the region and their effects on these systems that could lead to floods and major financial and human losses is essential in weather forecasting. Nowadays by improvement of numerical weather and climate prediction models and the increasing need to more accurate forecasting of heavy rainfall, the evaluation and verification of these models has been become much more important. In this study we have used the WRF model as a research-practical one with many valuable characteristics and flexibilities. In this research, the effects of heat and moisture fluxes of Caspian Sea on the synoptic and dynamical structure of 20 selective systems associated with heavy rainfall in the southern shores of Caspian Sea are investigated. These systems are selected based on the rainfall data gathered by three local stations named: Rasht, Babolsar and Gorgan in different seasons during a five-year period (2005-2010) with maximum amount of rainfall through the 24 hours of a day. In addition to synoptic analyses of these systems, the WRF model with and without surface flues was run using the two nested grids with the horizontal resolutions of 12 and 36 km. The results show that there are good consistencies between the predicted distribution of rainfall field, time of beginning and end of rainfall by the model and the observations. But the model underestimates the amounts of rainfall and the maximum difference with the observation is about 69%. Also, no significant changes in the results are seen when the domain and the resolution of computations are changed. The other noticeable point is that the systems are severely weakened by removing heat and moisture fluxes and thereby the amounts of large scale rainfall are decreased up to 77% and the convective rainfalls tend to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cálculo y diseño de una grúa torre desmontable con brazo horizontal giratorio destinada a la elevación y transporte de material de construcción en edificios de viviendas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes the model of Salant et al. (1983; Quarterly Journal of Economics, Vol. 98, pp. 185–199) to a successive oligopoly model with product differentiation. Upstream firms produce differentiated goods, retailers compete in quantities, and supply contracts are linear. We show that if retailers buy from all producers, downstream mergers do not affect wholesale prices. Our result replicates that of Salant's, where mergers are not profitable unless the size of the merged firm exceeds 80 per cent of the industry. This result is robust to the type of competition.