977 resultados para Growth-Factor-Beta
Resumo:
Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Resumo:
Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1 beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappa B ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
Background and purpose: Hereditary sensory and autonomic neuropathy ( HSAN) type V is a very rare disorder. It is characterized by the absence of thermal and mechanical pain perception caused by decreased number of small diameter neurons in peripheral nerves. Recent genetic studies have pointed out the aetiological role of nerve growth factor beta, which is also involved in the development of the autonomic nervous system and cholinergic pathways in the brain. HSAN type V is usually reported not to cause mental retardation or cognitive decline. However, a structured assessment of the cognitive pro. le of these patients has never been made. Methods and results: We performed a throughout evaluation of four HSAN type V patients and compared their performance with 37 normal individuals. Our patients showed no cognitive deficits, not even mild ones. Discussion and Conclusions: Although newer mutations on this and related disorders are continuously described, their clinical characterization has been restricted to the peripheral aspects of these conditions. A broader characterization of this rare disorder may contribute to better understand the mechanisms of the nociceptive and cognitive aspects of pain.
Resumo:
Common features such as elastic fibre destruction, mucoid accumulation, and smooth muscle cell apoptosis are co-localized in aneurysms of the ascending aorta of various aetiologies. Recent experimental studies reported an activation of TGF-beta in aneurysms related to Marfan (and Loeys-Dietz) syndrome. Here we investigate TGF-beta signalling in normal and pathological human ascending aortic wall in syndromic and non-syndromic aneurysmal disease. Aneurysmal ascending aortic specimens, classified according to aetiology: syndromic MFS (n = 15, including two mutations in TGFBR2), associated with BAV (n = 15) or degenerative forms (n = 19), were examined. We show that the amounts of TGF-beta 1 protein retained within and released by aneurysmal tissue were greater than for control aortic tissue, whatever the aetiology, contrasting with an unchanged TGF-beta 1 mRNA level. The increase in stored TGF-beta 1 was associated with enhanced LTBP-I protein and mRNA levels. These dysiregulations of the extracellular ligand are associated with higher phosphorylated Smad2 and Smad2 mRNA levels in the ascending aortic wall from all types of aneurysm. This activation correlated with the degree of elastic fibre fragmentation. Surprisingly, there was no consistent association between the nuclear location of pSmad2 and extracellular TGF-beta 1 and LTBP-I staining and between their respective mRNA expressions. In parallel, decorin. was focally increased in aneurysmal media, whereas biglycan was globally decreased in aneurysmal aortas. In conclusion, this study highlights independent dysregulations of TGF-beta retention and Smad2 signalling in syndromic and non-syndromic aneurysms of the ascending aorta. Copyright (C) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Introduction: Collagen-degrading matrix metalloproteinases (MMPs) are expressed by odontoblasts and present in dentin. We hypothesized that odontoblasts express other collagen-degrading enzymes such as cysteine cathepsins, and their activity would be present in dentin, because odontoblasts are known to express at least cathepsin D. Effect of transforming growth factor beta (TGF-beta) on cathepsin expression was also analyzed. Methods: Human odontoblasts and pulp tissue were cultured with and without TGF-beta, and cathepsin gene expression was analyzed with DNA microarrays. Dentin cathepsin and MMP activities were analyzed by degradation of respective specific fluorogenic substrates. Results: Both odontoblasts and pulp tissue demonstrated a wide range of cysteine cathepsin expression that gave minor responses to TGF-beta. Cathepsin and MMP activities were observed in all dentin samples, with significant negative correlations in their activities with tooth age. Conclusions: These results demonstrate for the first time the presence of cysteine cathepsins in dentin and suggest their role, along with MMPs, in dentin modification with aging. (J Endod 2010;36:475-481)
Resumo:
MMPs are endopeptidases that play a pivotal role in ECM turnover. RECK is a single membrane-anchored MMP-regulator. Here, we evaluated the temporal and spatial expression of MMP-2, MMP-9, and RECK during alveolar bone regeneration. The maxillary central incisor of Wistar rats was extracted and the animals were killed at 1, 3, 7, 10, 14, 21, 28, and 42 days post-operatively (n = 3/period). The hemimaxillae were collected, demineralized and embedded in paraffin. Immunohistochemical analysis was performed by the immunoperoxidase technique with polyclonal antibodies. On day 1, polymorphonuclear cells in the blood clot presented mild immunolabeling for MMPs. During bone remodeling, osteoblasts facing new bone showed positive staining for gelatinases and RECK in all experimental periods. MMPs were also found in the connective tissue and endothelial cells. Our results show for the first time that inactive and/or active forms of MMP-2, MMP-9 and RECK are differentially expressed by osteogenic and connective cells during several events of alveolar bone regeneration. This may be important for the replacement of the blood clot by connective tissue, and in the formation, maturation and remodeling of new bone.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Background: Oral lichen planus (OLP) is characterized by a subepithelial lymphocytic infiltrate, basement membrane (BM) disruption, intra-epithelial T-cell migration and apoptosis of basal keratinocytes. BM damage and T-cell migration in OLP may be mediated by matrix metalloproteinases (MMPs). Methods: We examined the distribution, activation and cellular sources of MMPs and their inhibitors (TIMPs) in OLP using immunohistochemistry, ELISA, RT-PCR and zymography. Results: MMP-2 and -3 were present in the epithelium while MMP-9 was associated with the inflammatory infiltrate. MMP-9 and TIMP-1 secretion by OLP lesional T cells was greater than OLP patient (p
Resumo:
Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Background and Aims: Hepatic steatosis has been shown to be associated with lipid peroxidation and hepatic fibrosis in a variety of liver diseases including non-alcoholic fatty liver disease. However, the lobular distribution of lipid peroxidation associated with hepatic steatosis, and the influence of hepatic iron stores on this are unknown. The aim of this study was to assess the distribution of lipid peroxidation in association with these factors, and the relationship of this to the fibrogenic cascade. Methods: Liver biopsies from 39 patients with varying degrees of hepatic steatosis were assessed for evidence of lipid peroxidation (malondialdehyde adducts), hepatic iron, inflammation, fibrosis, hepatic ;stellate cell activation (alpha-smooth muscle actin and TGF-beta expression) and collagen type I synthesis (procollagen a 1 (I) mRNA). Results: Lipid peroxidation occurred in and adjacent to fat-laden hepatocytes and was maximal in acinar zone 3. Fibrosis was associated with steatosis (P < 0.04), lipid peroxidation (P < 0.05) and hepatic iron stores (P < 0.02). Multivariate logistic regression analysis confirmed the association between steatosis and lipid peroxidation within zone 3 hepatocytes (P < 0.05), while for hepatic iron, lipid peroxidation was seen within sinusoidal cells (P < 0.05), particularly in zone 1 (P < 0.02). Steatosis was also associated with acinar inflammation (P < 0.005). α-Smooth muscle actin expression was present in association with both lipid peroxidation and fibrosis. Although the effects of steatosis and iron on lipid peroxidation and fibrosis were additive, there was no evidence of a specific synergistic interaction between them. Conclusions: These observations support a model where steatosis exerts an effect on fibrosis through lipid peroxidation, particularly in zone 3 hepatocytes. (C) 2001 Blackwell Science Asia Pty Ltd.
Resumo:
Although immunosuppressive regimens are effective, rejection occurs in up to 50% of patients after orthotopic liver transplantation (OLT), and there is concern about side effects from long-term therapy. Knowledge of clinical and immunogenetic variables may allow tailoring of immunosuppressive therapy to patients according to their potential risks. We studied the association between transforming growth factor-beta, interleukin-10, and tumor necrosis factor alpha (TNF-alpha) gene polymorphisms and graft rejection and renal impairment in 121 white liver transplant recipients. Clinical variables were collected retrospectively, and creatinine clearance was estimated using the formula of Cockcroft and Gault. Biallelic polymorphisms were detected using polymerase chain reaction-based methods. Thirty-seven of 121 patients (30.6%) developed at least 1 episode of rejection. Multivariate analysis showed that Child-Pugh score (P =.001), immune-mediated liver disease (P =.018), normal pre-OLT creatinine clearance (P =.037), and fewer HLA class 1 mismatches (P =.038) were independently associated with rejection, Renal impairment occurred in 80% of patients and was moderate or severe in 39%, Clinical variables independently associated with renal impairment were female sex (P =.001), pre-OLT renal dysfunction (P =.0001), and a diagnosis of viral hepatitis (P =.0008), There was a significant difference in the frequency of TNF-alpha -308 alleles among the primary liver diseases. After adjustment for potential confounders and a Bonferroni correction, the association between the TNF-alpha -308 polymorphism and graft rejection approached significance (P =.06). Recipient cytokine genotypes do not have a major independent role in graft rejection or renal impairment after OLT, Additional studies of immunogenetic factors require analysis of large numbers of patients with appropriate phenotypic information to avoid population stratification, which may lead to inappropriate conclusions.
Resumo:
Diabetes is now the leading cause of end-stage renal disease, blindness, lower-extremity amputations and impotence. In addition, the risk of death from cardiovascular disease such as myocardial infarction and stroke is more than doubled in diabetics. In September 2001, scientists from around the world met in Melbourne to discuss the mechanisms underlying neuronal and vascular changes in diabetic complications. This report summarizes the meeting and attempts to identify potential targets for drug intervention in diabetic complications. (C) 2001 Prous Science. All rights reserved.
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
Background: Cell-mediated immune responses in oral lichen planus (OLP) may be regulated by cytokines and their receptors. Methods: In situ cytokine expression and in vitro cytokine secretion in OLP were determined by immunohistochemistry and ELISA. Resulults: The majority of subepithelial and intraepithelial mononuclear cells in OLP were CD8(+) . In some cases, intraepithelial CD8(+) cells were adjacent to degenerating keratinocytes. CD4(+) cells were observed mainly in the deep lamina propria with occasional CD4(+) cells close to basal keratinocytes. Mononuclear cells expressed IFN-gamma in the superficial lamina propria and TNF-alpha adjacent to basal keratinocytes. Basal keratinocytes expressed TNF-alpha as a continuous band. TNF R1 was expressed by mononuclear cells and basal and suprabasal keratinocytes. There was variable expression of TGF-beta1 in the subepithelial infiltrate while all intraepithelial mononuclear cells were TGF-beta1(-) . Keratinocytes in OLP stained weakly for TGF-beta1. Unstimulated OLP lesional T cells secreted IFN-gammain vitro . TNF-alpha stimulation down-regulated IFN-gamma secretion and up-regulated TNF-alpha secretion. IL-4, IL-10 and TGF-beta1 secretion were not detected. Conclusions: These data suggest the development of a T helper 1 immune response that may promote CD8(+) cytotoxic T-cell activity in OLP.