948 resultados para Genome-Wide Association
Resumo:
La division asymétrique est essentielle pour générer la diversité au cours du développement et permet aussi de réguler la balance entre renouvellement et différenciation des cellules souches chez l’adulte. Dans ces deux cas de figure, elle dépend respectivement d’une polarité intrinsèque ou d’une polarité extrinsèque. C. elegans est un excellent modèle pour étudier les mécanismes cellulaires et moléculaires de la division asymétrique in vivo. Chez l’embryon, le maintien d’un axe de polarité antéro-postérieur dépend des protéines PAR conservées et localisées de façon asymétrique en deux groupes mutuellement exclusifs; le groupe antérieur avec PAR-3, PAR-6, PKC-3 et le groupe postérieur avec PAR-2 et PAR-1. L’absence d’une protéine PAR entraine une perte de polarité et une létalité embryonnaire. Lors d’un crible par ARN interférence mené par Jean-Claude Labbé pour identifier les suppresseurs de la létalité associée à la perte de PAR-2, deux cyclines de type B, CYB-2.1 et CYB-2.2 ont été trouvées. J’ai déterminé que CYB-2.1 et CYB-2.2 interviennent dans la polarité sans perturber le cycle cellulaire et agissent vraisemblablement avec leur kinase associée, CDK-1, pour stabiliser les niveaux protéiques de PAR-6. Ces travaux permettent de mieux définir les liens étroits entre polarité et cycle cellulaire. La lignée germinale de C. elegans est un excellent modèle pour étudier les divisions des cellules souches germinales in vivo. Par contre, l’absence d’orientation préférentielle de ces divisions laisse envisager que la complexité morphologique de la niche pourrait engendrer une diversité d’axe possible. J’ai étudié la régulation morphologique de cette niche, une unique cellule somatique appelée distal tip cell (DTC), qui arborise de longues extensions au stade adulte. Mes résultats préliminaires favorisent un modèle dans lequel les cellules souches et progéniteurs germinaux (CSPG) supportent la formation de ces extensions. Enfin, j’ai obtenu des conditions favorables à l’étude de la division asymétrique extrinsèque dans ce modèle, en simplifiant l’architecture de la niche dans des conditions qui préservent les divisions cellulaires des cellules souches. Mes travaux ont permis de mieux comprendre les liens unissant les différents processus biologiques impliqués dans la division asymétrique, d’une part par l’étude du rôle qu’y jouent des régulateurs clés du cycle cellulaire au cours du développement et d’autre part par la caractérisation d’une communication bidirectionnelle entre la niche et les cellules souches chez l’adulte.
Resumo:
Experimental and epidemiological studies demonstrate that fetal growth restriction and low birth weight enhance the risk of chronic diseases in adulthood. Derangements in tissue-specific epigenetic programming of fetal and placental tissues are a suggested mechanism of which DNA methylation is best understood. DNA methylation profiles in human tissue are mostly performed in DNA from white blood cells. The objective of this study was to assess DNA methylation profiles of IGF2 DMR and H19 in DNA derived from four tissues of the newborn. We obtained from 6 newborns DNA from fetal placental tissue (n = 5), umbilical cord CD34+ hematopoietic stem cells (HSC) and CD34- mononuclear cells (MNC) (n = 6), and umbilical cord Wharton jelly (n = 5). HCS were isolated using magnetic-activated cell separation. DNA methylation of the imprinted fetal growth genes IGF2 DMR and H19 was measured in all tissues using quantitative mass spectrometry. ANOVA testing showed tissue-specific differences in DNA methylation of IGF2 DMR (p value 0.002) and H19 (p value 0.001) mainly due to a higher methylation of IGF2 DMR in Wharton jelly (mean 0.65, sd 0.14) and a lower methylation of H19 in placental tissue (mean 0.25, sd 0.02) compared to other tissues. This study demonstrates the feasibility of the assessment of differential tissue specific DNA methylation. Although the results have to be confirmed in larger sample sizes, our approach gives opportunities to investigate epigenetic profiles as underlying mechanism of associations between pregnancy exposures and outcome, and disease risks in later life.
Resumo:
The multiple autoimmune syndromes (MAS) consist on the presence of three or more well-defined autoimmune diseases (ADs) in a single patient. The aim of this study was to analyze the clinical and genetic characteristics of a large series of patients with MAS. A cluster analysis and familial aggregation analysis of ADs was performed in 84 patients. A genome-wide microsatellite screen was performed in MAS families, and associated loci were investigated through the pedigree disequilibrium test. Systemic lupus erythematosus (SLE), autoimmune thyroid disease (AITD), and Sjögren's syndrome together were the most frequent ADs encountered. Three main clusters were established. Aggregation for type 1 diabetes, AITD, SLE, and all ADs as a trait was found. Eight loci associated with MAS were observed harboring autoimmunity genes. The MAS represent the best example of polyautoimmunity as well as the effect of a single genotype on diverse phenotypes. Its study provides important clues to elucidate the common mechanisms of ADs (i.e., autoimmune tautology). © Springer Science+Business Media, LLC 2012.
Resumo:
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.
Resumo:
Supplementation of diets with plant extracts such as ginkgo biloba extract (EGb 761®) (definition see editorial) for health and prevention of degenerative diseases is popular. However, it is often difficult to analyse the biological activities of plant extracts due to their complex nature and the possible synergistic and/or antagonistic effects of their components. Genome-wide expression monitoring with high-density oligonucleotide arrays provides one way to examine the molecular targets of plant extracts and may prove a useful tool in evaluating their therapeutic claims. Here, we will briefly describe some of our work on the effect of EGb 761® on differential gene expression in relation to its potential anti-carcinogenic, photoprotective and neuromodulatory properties.
Resumo:
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.
Resumo:
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Resumo:
Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
Resumo:
Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphomositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.
Resumo:
Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed.
Resumo:
The aim of this paper is to develop a flexible model for analysis of quantitative trait loci (QTL) in outbred line crosses, which includes both additive and dominance effects. Our flexible intercross analysis (FIA) model accounts for QTL that are not fixed within founder lines and is based on the variance component framework. Genome scans with FIA are performed using a score statistic, which does not require variance component estimation. RESULTS: Simulations of a pedigree with 800 F2 individuals showed that the power of FIA including both additive and dominance effects was almost 50% for a QTL with equal allele frequencies in both lines with complete dominance and a moderate effect, whereas the power of a traditional regression model was equal to the chosen significance value of 5%. The power of FIA without dominance effects included in the model was close to those obtained for FIA with dominance for all simulated cases except for QTL with overdominant effects. A genome-wide linkage analysis of experimental data from an F2 intercross between Red Jungle Fowl and White Leghorn was performed with both additive and dominance effects included in FIA. The score values for chicken body weight at 200 days of age were similar to those obtained in FIA analysis without dominance. CONCLUSION: We have extended FIA to include QTL dominance effects. The power of FIA was superior, or similar, to standard regression methods for QTL effects with dominance. The difference in power for FIA with or without dominance is expected to be small as long as the QTL effects are not overdominant. We suggest that FIA with only additive effects should be the standard model to be used, especially since it is more computationally efficient.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.2014
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Speech and language disorders are some of the most common referral reasons to child development centers accounting for approximately 40% of cases. Stuttering is a disorder in which involuntary repetition, prolongation, or cessation of the sound precludes the flow of speech. About 5% of individuals in the general population have a stuttering problem, and about 80% of the affected children recover naturally. The causal factors of stuttering remain uncertain in most cases; studies suggest that genetic factors are responsible for 70% of the variance in liability for stuttering, whereas the remaining 30% is due to environmental effects supporting a complex cause of the disorder. The use of high-resolution genome wide array comparative genomic hybridization has proven to be a powerful strategy to narrow down candidate regions for complex disorders. We report on a case with a complex set of speech and language difficulties including stuttering who presented with a 10Mb deletion of chromosome region 7q33-35 causing the deletion of several genes and the disruption of CNTNAP2 by deleting the first three exons of the gene. CNTNAP2 is known to be involved in the cause of language and speech disorders and autism spectrum disorder and is in the same pathway as FOXP2, another important language gene, which makes it a candidate gene for causal studies speech and language disorders such as stuttering. (C) 2010 Wiley-Liss, Inc.