971 resultados para Fluido gengival
Resumo:
Petroleum exploration activity occurs on the offshore Potiguar Basin, from very shallow (2-3 m) until about 50 m water depth, extending from Alto de Touros (RN) to Alto de Fortaleza (CE). Take in account the biological importance and the heterogeneity of sediments on this area, it is necessary the understanding of the sedimentological dynamics, and mainly the changes generated by petroleum exploration to prevent possible damages to environment. Despite the intense activity of oil exploration in this area, research projects like these are still rare. In view to minimize this gap, this study was developed to evaluate sedimentological, mineralogical and geochemical changes in the vicinity of a exploration well, here designated as well A, located on the Middle continental shelf, near the transition to Outer shelf. The well selected for this study was the first one drilled with Riserless Mud Recovery technology (RMR) in Brazil. The main difference from this to the conventional method is the possibility of drilling phase I of the well with return of drilling material to the rig tank, minimizing fluid and gravel discharging around the vicinity, during this phase. Monitoring consisted of three surveys, first of them done before start drilling, the second one done 19 days after the end of drilling and the third one done one year after then. Comparison of the studied variables (calcium carbonate and organic matter content, sediment size, mineralogy and geochemistry) was done with their average, median and coefficient of variation values to understand the changes after drilling activity. Because operating company technical reasons, the well location was changed after the first survey (C1), resulting in a shift of the sampled area on the two last surveys (C2 e C3). Nevertheless, the acquired data presented a good correlation, with no loss to the mean goal of the study. The sedimentological, mineralogical and geochemical analyzes were done at Federal University of Rio Grande do Norte (UFRN). The results indicated a predominantly sandy environment along the three surveys. It was noticed that the first survey (C1), presented different values for all the studied variables than to the second (C2) and third (C3) surveys, which had similar values. Siliciclastic sediments are prevalent at all surveys, and quartz is the main component (more than 80%). Heavy minerals (garnet, turmaline, zircon and lmenite), rock fragments and mud aggregates also was described. Bioclastic sediments are dominated by coralline algae (more than 45%) and mollusks (more than 30%), followed by benthic foraminifera, bryozoans and worm tubes. More rarely was observed ostracoda and spike of calcareous sponge. Because the low changes of the sediments at the studied area and by the using of RMR method in the drilling, it was possible to conclude that drilling activity did not promote significant alteration on the local sediment cover. Changes in the studied variables before and after drilling activity could be influenced by the changing in the sampling area after survey 1 (C1).
Resumo:
The oil industry is one of the activities that generates more waste to the environment. The drill cuttings is a waste generated in large quantities in the drilling process and that may cause environmental damage such as soil contamination and consequently the contamination of groundwater if disposed of without prior treatment. Arises the need to develop scientific activities and research ways to adapt these wastes the current environmental standards. In the case of solid wastes, the NBR 10004: 2004 of the Brazilian Association of Technical Standards (ABNT) classifies them into class I waste (hazardous) and class II (not dangerous), which determines which wastes may or may not be discarded in the environment without causing environmental impact. This study presents a novel alternative for treating drill cuttings, where this waste was classified as class I (Abreu & Souza, 2005), mainly by removing the n-paraffin present in it, since this arises when using drilling fluids base oil. Using microemulsion systems promotes the removal of this contaminant drill cuttings samples from wells located in Alto do Rodrigues - RN. Initially, we determined the concentration of paraffin using infrared method in samples were extracted with ultrasound, we obtained a paraffin concentration in the range from 36.59 to 43.52 g of paraffin per kilogram of cuttings. Used two microemulsion systems containing two nonionic surfactants from different classes, one is an alcohol ethoxylated (UNTL-90) and the other an nonylphenol ethoxylated (RNX 110). The results indicated that the system UNTL-90 surfactant has better efficiency than the system with RNX 110. The study of the influence of contact time at the extraction showed that for times greater than 25 minutes has a tendency to increase the percentage extraction with increasing contact time. It was also observed that the extraction is fast because at 1 minute contact has 22.7% extraction. The reuse of the microemulsion system without removing the paraffin extracted in previous steps, showed reduction of 29.32 in percentage of extraction by comparing the first and third extraction, but by comparing the first and second extractions reduction is 8.5 in percentage extraction, so the systems reuse optimization can be an option for economically viable removing paraffin from cuttings. The extraction with shaking is more effective in the treatment of cuttings, reaching the extraction percentage of 87.04%, that is, obtaining a drill cuttings with 0.551% paraffin. Using the percentage of paraffin employed in non-aqueous drilling fluids and fluid maximum limit on cuttings for disposal established by the Environmental Protection Agency of the United States (US EPA), one arrives at the conclusion that the level of paraffin on gravel cannot exceed 3.93%. Conclude that the amount of paraffin in the treated cuttings with the microemulsion system with shaking is below the established by US EPA, showing that the system used was efficient in removing the paraffin from the drill cuttings.
Resumo:
Nanoemulsions are emulsified systems, characterized for reduced droplet size (50- 500nm), which the main characteristic are kinect stability and thermodynamic instability. These are promising systems on cosmetic area due to their droplet size that provide different advantages when compared to conventional systems, among others, larger surface area and better permeability. The Opuntia ficus-indica (L.) Mill is a plant cultivated on Caatinga Brazilian biome, which has great socioeconomic importance to region. This plant shows carbohydrates utilized for cosmetic industry as moisturizing active in their chemical composition. The aim of study was to develop, characterize, evaluate stability and moisturizing efficacy of cosmetic nanoemulsions added to Opuntia ficus-indica (L.) Mill extract. Nanoemulsions preparation was made using a low energy method. Different nanoemulsions were formulated varying the ratio of oil, water and surfactant phases beyond xanthan gum (0.5% e 1%) and Opuntia ficus-indica (L.) Mill hydroglycolic extract addition on 1% and 3%. Obtained nanoemulsions were submitted to preliminary and accelerated stability tests. The evaluated parameters monitored were: macroscopic aspect, pH value, droplet size, zeta potential and polydispersion index, during 60 days on different temperatures. Stable formulations were submitted to moisturizing efficacy assessment by capacitance and transepidermal water loss methodologies during 5 hours. Stable samples were white and showed homogeneous and fluid aspect, pH value was inside ideal range (4,5-6,0) to topical application and droplet size under 200nm characterizing these system as nanoemulsions. Developed nanoemulsions did not decrease transepidermal water loss, however increased the water content on stratum corneum, highlighting the nanoemulsions containing 0.5% of xanthan gum and 1% of hydroglycolic extract. This work presents cosmetic moisturizing nanoemulsions composed to vegetal raw material from Brazilian Caatinga with potential to be used on cosmetic area.
Resumo:
One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.
Resumo:
The recognition of karst reservoirs in carbonate rocks has become increasingly common. However, most karst features are small to be recognized in seismic sections or larger than expected to be investigated with borehole data. One way forward has been the study of analogue outcrops and caves. The present study investigates lithofacies and karst processes, which lead to the generation of the largest system of caves in South America. The study area is located in the Neoproterozoic Una Group in central-eastern Brazil. This province comprises several systems of carbonate caves (Karmann and Sanchéz, 1979), which include the Toca da Boa Vista and Barriguda caves, considered the largest caves in South America (Auler and Smart, 2003). These caves were formed mainly in dolomites of the Salitre Formation, which was deposited in a shallow marine environment in an epicontinental sea (Medeiros and Pereira, 1994). The Salitre Formation in the cave area comprises laminated mud/wakestones, intraclastic grainstones, oncolitic grainstones, oolitic grainstones, microbial laminites, colunar stromatolites, trombolites and fine siliciclastic rocks (marls, shales, and siltites). A thin layer and chert nodules also occur at the top of the carbonate unit. Phosphate deposits are also found. Our preliminary data indicate that folds and associated joints control the main karstification event at the end of the Brasiliano orogeny (740-540 Ma). We recognized five lithofacies in the cave system: (1) Bottom layers of grainstone with cross bedding comprise the main unit affected by speleogenesis, (2) thin grainstone layers with thin siltite layers, (3) microbial laminites layers, (4) layers of columnar stromatolites, and a (5) top layer of siltite. Levels (1) to (3) are affected by intense fracturing, whereas levels (4) and (5) seal the caves and have little fracturing. Chert, calcite and gipsite veins cut across the carbonate units and play a major role in diagenesis. Our preliminary study indicate that hypogenic spelogenesis is the main process of karst development and contributed significantly to the generation of secondary porosity and permeability in the carbonate units.
Resumo:
During its operations, the oil industry generates a lot of waste, including gravel from drilling. Control of environmental impacts caused by this waste represents a major challenge. Such impacts can be minimized when it is given an appropriate management by being properly treated and properly disposed or recycled. The properties of these materials can be greatly influenced when a waste is added to its composition. This work aims to study the incorporation of gravel waste oil-well drilling in the standard body for production of red ceramic from a ceramic industry in São Gonçalo do Amarante / RN. The success of the incorporation can minimize costs in the production of ceramic pieces and reduce the environmental impacts caused by waste. The raw materials used were collected, characterized, and formulated with the percentages of 0%, 20% and 40% by weight of substitution of residue were synthesized at temperatures of 900, 1.010 and 1.120 °C using 30 minute firing intervals, 1 hour and 30min and 2 hours and 30 minutes, based on a factorial design 2³. Samples were then subjected to the tests of Water Absorption, Linear Retraction Firing, Flexural Rupture Strength, Apparent Porosity and Apparent Specific mass and Scanning Electron Microscopy (SEM) of break section. The results showed that the use of the residue for the manufacture of the ceramic products is possible (tiles, bricks and massive hollow bricks) replacing the clay to 40%, meeting the requirements of the standard and the literature for the technological properties of the final product.
Resumo:
This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.
Resumo:
In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.
Resumo:
Household refrigerators are equipments that represent a significant portion on the eletricity consumption of Brazilian homes. The use of these devices with low energy efficiency contributes to increase the energy consumption. The energy efficiency of a refrigerator is a function of the interaction between the coolant fluid and the components of the thermodynamic cycle. Changes in load and/or nature of the coolant may modify the condensing and/or evaporation pressures. The volumetric capacity of the compressor, the mass flow of coolant and the compression power are dependent parameters of the condensation and evaporation pressures. Thus, the expansion devices exert an importante role in the balance of these pressures, being fundamental for the better performance of the refrigeration cycle. This experimental research aims to investigate the sensitivity of the performance parameters of a household refrigerator operating with R134a and at different evaporation pressures. Therefore, a small refrigerator was instrumented with temperature, pressure sensors and other variables of interest, installed along the cooling circuit, in order to allow the thermal mapping and the evaluation of the equipment performance parameters. The variation of pressure loss in the coolant fluid resulting from the operation of the expansion valve with micrometric adjustment that modifies the evaporation temperature, influencing significantly the performance parameters of the thermodynamic refrigeration cycle.
Resumo:
In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.
Resumo:
Objective: To perform a long-term clinical evaluation of the periodontium of removable parti al denture (RPD) wearers, comparing the direct pillar teeth of tooth-supported and toothtissue supported RPDs. Method: Fifty patients with mean age of 45 years were enrolled in the study. The individuals were examined by a single examiner at the moment of denture installation and after 3, 6, 9 and 12 months. In each exam, the following parameters were verified: gingival recession (GR), probing depth (PD), plaque index (PI), gingival index (GI) e amount kerati nized mucosa (KM). All patients received oral hygiene instructions and prophylaxis and, when necessary, scaling and root planing. An analysis from the confidence interval was done to evaluate the endpoints regarding the type of denture in the direct pillar group. Results: The tooth-tissue supported dentures showed significantly higher GR, GI and PI values, and significantly lower KM values. Over time, neither of the types of denture presented statistically significant difference from the initial to the final examination for the parameters GR, PD, KM and GI, while the PI was significant only for the tooth-supported dentures. Conclusion: Pillar teeth adjacent to free ends presented a less favorable periodontal conditi on than the pillar teeth adjacent to intercalated spaces. However, the use of RPD did not aggravate the initial condition, after a follow-up period of 12 months. The findings of the study indicate that, within 1 year, there were no significant differences between the direct pillars of the toothsupported and tooth-ti ssue supported dentures, and suggest the need of professional follow up for a longer period.
Resumo:
Objective: To perform a long-term clinical evaluation of the periodontium of removable parti al denture (RPD) wearers, comparing the direct pillar teeth of tooth-supported and toothtissue supported RPDs. Method: Fifty patients with mean age of 45 years were enrolled in the study. The individuals were examined by a single examiner at the moment of denture installation and after 3, 6, 9 and 12 months. In each exam, the following parameters were verified: gingival recession (GR), probing depth (PD), plaque index (PI), gingival index (GI) e amount kerati nized mucosa (KM). All patients received oral hygiene instructions and prophylaxis and, when necessary, scaling and root planing. An analysis from the confidence interval was done to evaluate the endpoints regarding the type of denture in the direct pillar group. Results: The tooth-tissue supported dentures showed significantly higher GR, GI and PI values, and significantly lower KM values. Over time, neither of the types of denture presented statistically significant difference from the initial to the final examination for the parameters GR, PD, KM and GI, while the PI was significant only for the tooth-supported dentures. Conclusion: Pillar teeth adjacent to free ends presented a less favorable periodontal conditi on than the pillar teeth adjacent to intercalated spaces. However, the use of RPD did not aggravate the initial condition, after a follow-up period of 12 months. The findings of the study indicate that, within 1 year, there were no significant differences between the direct pillars of the toothsupported and tooth-ti ssue supported dentures, and suggest the need of professional follow up for a longer period.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.