973 resultados para Ferro-nickel melting slags


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is compelling evidence that Planet Earth is on the path to an era of global warming that has serious implications for the well-being of both people and nature. This three-volume synthesis of literature will be a marvelous place for both the public and new scholars interested in global warming to begin their pursuit of the subject. The author captures the best of the scientific literature and press materials appearing in recent years. The utility of these volumes as a resource for gaining a broad background or pursuing a particular aspect of global warming is enhanced by Johansen's talent for explaining with clarity a vast and rapidly growing subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO3-) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation.Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO3- concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasilia Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs +/- Bt +/- Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 degrees C and 900 degrees C. The GASP bane peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz +/- Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelandia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelandia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of nickel catalysts for industrial applications is relatively simple; however, nickel oxidation is usually difficult to avoid, which makes it challenging to optimize catalytic activities, metal loadings, and high-temperature activation steps. A robust, oxidation-resistant and very active nickel catalyst was prepared by controlled decomposition of the organometallic precursor [bis(1,5-cyclooctadiene)nickel(0)], Ni(COD)(2), over silica-coated magnetite (Fe3O4@SiO2). The sample is mostly Ni(0), and surface oxidized species formed after exposure to air are easily reduced in situ during hydrogenation of cyclohexene under mild conditions recovering the initial activity. This unique behavior may benefit several other reactions that are likely to proceed via Ni heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sewage sludge has been used to fertilize coffee, increasing the risk of metal contamination in this crop. The aim of this work was to study the effects of Cd, Zn and Ni in adult coffee plants growing under field conditions. Seven-year-old coffee plants growing in the field received one of three;loses of Cd, Zn or Ni: 15,45 and 90 g Cd plant(-1); 35, 105 and 210 g Ni plant(-1); and 100, 300 and 600 g Zn plant(-1), with all three metals in the form of sulphate salts. After three months, we noticed good penetration of the three metals into the soil, especially in the first 50 cm, which is the region where most coffee plant roots are concentrated. Leaf concentrations of K, Ca, Mg, S, B, Cu, Fe and Mn were nor affected. N levels did not change with the application of Ni or Zn but were reduced with either 45 or 90 g Cd plant(-1). Foliar P concentrations decreased with the addition of 45 and 90 g Cd plant(-1) and 600 g Zn plant(-1). Zn levels in leaves were not affected by the application of Cd or Ni. The highest concentrations. of Zn were found in branches (30-230 mg kg(-1)), leaves (7-35 mg kg(-1)) and beam (4-6.5 mg kg(-1)); Ni was found in leaves (4-45 mg kg(-1)), branches (3-18 mg kg(-1)) and beans (1-5 mg kg(-1)); and Cd was found in branches (0-6.2 mg kg(-1)) and beans (0-1.5 mg kg(-1)) but was absent in leaves. The mean yield of two harvests was not affected by Ni, but it decreased at the highest dose of Zn (600 g plant(-1)) and the two higher doses of Cd (45 and 90 g plant(-1)). Plants died when treated with the highest dose of Cd and showed symptoms of toxicity with the highest dose of Zn. Nevertheless, based on the amounts of metal used and the results obtained, we conclude that coffee plants are highly tolerant to the three metals tested. Moreover, even at high doses, there was very little transport to the beans, which is the part consumed by humans. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two steel sheets, one with 5% Ni and another with 10% Ni, were submitted to carburization and quenching, obtaining a microstructure with martensite and retained austenite. These steels were characterized with magnetic Barkhausen noise (MBN). The Barkhausen signal is distinctively different for the carburized and quenched samples. The carburized and quenched samples present higher coercive field than the annealed samples. X-ray diffraction data indicated that the carburized and quenched samples have high density of dislocations, a consequence of the martensitic transformation.