993 resultados para Fe Modeling
Resumo:
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or singlechain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Resumo:
Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).
Resumo:
Internal waves are an important factor in the design of drill operations and production in deep water, because the waves have very large amplitude and may induce large horizontal velocity. How the internal waves occur and propagate over benthal terrain is of great concern for ocean engineers. In the present paper, we have formulated a mathematical model of internal wave propagation in a two-layer deep water, which involves the effects of friction, dissipation and shoaling, and is capable of manifesting the variation of the amplitude and the velocity pattern. After calibration by field data measured at the Continental Slope in the Northern South China Sea, we have applied the model to the South China Sea, investigating the westward propagation of internal waves from the Luzon Strait, where internal waves originate due to the interaction of benthal ridge and tides. We find that the internal wave induced velocity profile is obviously characterized by the opposite flow below and above the pycnocline, which results in a strong shear, threatening safety of ocean structures, such as mooring system of oil platform, risers, etc. When internal waves propagate westwards, the amplitude attenuates due to the effects of friction and dissipation. The preliminary results show that the amplitude is likely to become half of its initial value at Luzon Strait when the internal waves propagate about 400 kilometers westwards.
Resumo:
The prediction and estimate of water and soil loss is fundamental important for understanding the effect of the spatial heterogeneity of underlying surfaces and preventing ecological environment deterioration. In this paper, a dynamic model of runoff and sediment yield in small watersheds is established. The proposed model includes three components: runoff generation caused by rainfall, soil erosion on hillslopes by overland flow, and runoff concentration and sediment transport on watersheds. Applying the proposed model, the runoff and sediment yield processes in a typical catchment on the loess plateau was estimated, which exhibited a good agreement between predicted results and observation.
Resumo:
Because the Earth’s upper mantle is inaccessible to us, in order to understand the chemical and physical processes that occur in the Earth’s interior we must rely on both experimental work and computational modeling. This thesis addresses both of these geochemical methods. In the first chapter, I develop an internally consistent comprehensive molar volume model for spinels in the oxide system FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. In the second chapter, I calibrate a molar volume model for cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O. I use the method of singular value analysis to calibrate excess volume of mixing parameters for the garnet model. The implications the model has for the density of the lithospheric mantle are explored. In the third chapter, I discuss the nuclear inelastic X-ray scattering (NRIXS) method, and present analysis of three orthopyroxene samples with different Fe contents. Longitudinal and shear wave velocities, elastic parameters, and other thermodynamic information are extracted from the raw NRIXS data.
Resumo:
Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.
We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.
The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield
ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV
The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.
A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives
ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV
Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.
Resumo:
Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997). Pollutants accumulate on impervious surfaces, and the increased runoff with urbanization is a leading cause of nonpoint source pollution (USEPA 2002). Sediment, chemicals, bacteria, viruses, and other pollutants are carried into receiving water bodies, resulting in degraded water quality (Holland et al. 2004, Sanger et al. 2008). (PDF contains 5 pages)
Resumo:
Using neuromorphic analog VLSI techniques for modeling large neural systems has several advantages over software techniques. By designing massively-parallel analog circuit arrays which are ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local interactions are important in the computation. While analog VLSI circuits are not as flexible as software methods, the constraints posed by this approach are often very similar to the constraints faced by biological systems. As a result, these constraints can offer many insights into the solutions found by evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor system which requires both fast sensory processing and fast motor control. A one-dimensional hardware model of the primate eye has been built which simulates the physical dynamics of the biological system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that control eye movements. In this framework, a visually-triggered saccadic system is demonstrated which generates averaging saccades. In addition, an auditory localization system, based on the neural circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. Two different types of learning are also demonstrated on the saccadic system using floating-gate technology allowing the non-volatile storage of analog parameters directly on the chip. Finally, a model of visual attention is used to select and track moving targets against textured backgrounds, driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the center of the field of view. This system represents one of the few efforts in this field to integrate both neuromorphic sensory processing and motor control in a closed-loop fashion.
Resumo:
This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages)
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)