959 resultados para Estimation process
Resumo:
To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.
Resumo:
This article describes the architecture of a monitoring component for the YAWL system. The architecture proposed is based on sensors and it is realized as a YAWL service to have perfect integration with the YAWL systems. The architecture proposed is generic and applicable in different contexts of business process monitoring. Finally, it was tested and evaluated in the context of risk monitoring for business processes.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This thesis reports on an investigation to develop an advanced and comprehensive milling process model of the raw sugar factory. Although the new model can be applied to both, the four-roller and six-roller milling units, it is primarily developed for the six-roller mills which are widely used in the Australian sugar industry. The approach taken was to gain an understanding of the previous milling process simulation model "MILSIM" developed at the University of Queensland nearly four decades ago. Although the MILSIM model was widely adopted in the Australian sugar industry for simulating the milling process it did have some incorrect assumptions. The study aimed to eliminate all the incorrect assumptions of the previous model and develop an advanced model that represents the milling process correctly and tracks the flow of other cane components in the milling process which have not been considered in the previous models. The development of the milling process model was done is three stages. Firstly, an enhanced milling unit extraction model (MILEX) was developed to access the mill performance parameters and predict the extraction performance of the milling process. New definitions for the milling performance parameters were developed and a complete milling train along with the juice screen was modelled. The MILEX model was validated with factory data and the variation in the mill performance parameters was observed and studied. Some case studies were undertaken to study the effect of fibre in juice streams, juice in cush return and imbibition% fibre on extraction performance of the milling process. It was concluded from the study that the empirical relations developed for the mill performance parameters in the MILSIM model were not applicable to the new model. New empirical relations have to be developed before the model is applied with confidence. Secondly, a soluble and insoluble solids model was developed using modelling theory and experimental data to track the flow of sucrose (pol), reducing sugars (glucose and fructose), soluble ash, true fibre and mud solids entering the milling train through the cane supply and their distribution in juice and bagasse streams.. The soluble impurities and mud solids in cane affect the performance of the milling train and further processing of juice and bagasse. New mill performance parameters were developed in the model to track the flow of cane components. The developed model is the first of its kind and provides some additional insight regarding the flow of soluble and insoluble cane components and the factors affecting their distribution in juice and bagasse. The model proved to be a good extension to the MILEX model to study the overall performance of the milling train. Thirdly, the developed models were incorporated in a proprietary software package "SysCAD’ for advanced operational efficiency and for availability in the ‘whole of factory’ model. The MILEX model was developed in SysCAD software to represent a single milling unit. Eventually the entire milling train and the juice screen were developed in SysCAD using series of different controllers and features of the software. The models developed in SysCAD can be run from macro enabled excel file and reports can be generated in excel sheets. The flexibility of the software, ease of use and other advantages are described broadly in the relevant chapter. The MILEX model is developed in static mode and dynamic mode. The application of the dynamic mode of the model is still under progress.
Resumo:
Conceptual modelling supports developers and users of information systems in areas of documentation, analysis or system redesign. The ongoing interest in the modelling of business processes has led to a variety of different grammars, raising the question of the quality of these grammars for modelling. An established way of evaluating the quality of a modelling grammar is by means of an ontological analysis, which can determine the extent to which grammars contain construct deficit, overload, excess or redundancy. While several studies have shown the relevance of most of these criteria, predictions about construct redundancy have yielded inconsistent results in the past, with some studies suggesting that redundancy may even be beneficial for modelling in practice. In this paper we seek to contribute to clarifying the concept of construct redundancy by introducing a revision to the ontological analysis method. Based on the concept of inheritance we propose an approach that distinguishes between specialized and distinct construct redundancy. We demonstrate the potential explanatory power of the revised method by reviewing and clarifying previous results found in the literature.
Resumo:
Nitrous oxide is a major greenhouse gas emission. The aim of this research was to develop and apply statistical models to characterize the complex spatial and temporal variation in nitrous oxide emissions from soils under different land use conditions. This is critical when developing site-specific management plans to reduce nitrous oxide emissions. These studies can improve predictions and increase our understanding of environmental factors that influence nitrous oxide emissions. They also help to identify areas for future research, which can further improve the prediction of nitrous oxide in practice.
Resumo:
Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to predict process delays via a method for configuring so-called Process Risk Indicators(PRIs). The method learns suitable configurations from past process behaviour recorded in event logs. To validate the approach we have implemented it as a plug-in of the ProM process mining framework and have conducted experiments using various data sets from a major insurance company.
Resumo:
Background: Previous attempts at costing infection control programmes have tended to focus on accounting costs rather than economic costs. For studies using economic costs, estimates tend to be quite crude and probably underestimate the true cost. One of the largest costs of any intervention is staff time, but this cost is difficult to quantify and has been largely ignored in previous attempts. Aim: To design and evaluate the costs of hospital-based infection control interventions or programmes. This article also discusses several issues to consider when costing interventions, and suggests strategies for overcoming these issues. Methods: Previous literature and techniques in both health economics and psychology are reviewed and synthesized. Findings: This article provides a set of generic, transferable costing guidelines. Key principles such as definition of study scope and focus on large costs, as well as pitfalls (e.g. overconfidence and uncertainty), are discussed. Conclusion: These new guidelines can be used by hospital staff and other researchers to cost their infection control programmes and interventions more accurately.
Resumo:
The ability to steer business operations in alignment with the true origins of costs, and to be informed about this on a real-time basis, allows businesses to increase profitability. In most organisations however, high-level cost-based managerial decisions are still being made separately from process-related operational decisions. In this paper, we describe how process-related decisions at the operational level can be guided by cost considerations and how these cost-informed decision rules can be supported by a workflow management system. The paper presents the conceptual framework together with data requirements and technical challenges that need to be addressed to realise cost-informed workflow execution. The feasibility of our approach is demonstrated using a prototype implementation in the YAWL workflow environment.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.
Resumo:
Monitoring and estimation of marine populations is of paramount importance for the conservation and management of sea species. Regular surveys are used to this purpose followed often by a manual counting process. This paper proposes an algorithm for automatic detection of dugongs from imagery taken in aerial surveys. Our algorithm exploits the fact that dugongs are rare in most images, therefore we determine regions of interest partially based on color rarity. This simple observation makes the system robust to changes in illumination. We also show that by applying the extended-maxima transform on red-ratio images, submerged dugongs with very fuzzy edges can be detected. Performance figures obtained here are promising in terms of degree of confidence in the detection of marine species, but more importantly our approach represents a significant step in automating this type of surveys.
Resumo:
Business process management systems (BPMS) belong to a class of enterprise information systems that are characterized by the dependence on explicitly modeled process logic. Through the process logic, it is relatively easy to manage explicitly the routing and allocation of work items along a business process through the system. Inspired by the DeLone and McLean framework, we theorize that these process-aware system features are important attributes of system quality, which in turn will elevate key user evaluations such as perceived usefulness, and usage satisfaction. We examine this theoretical model using data collected from four different, mostly mature BPM system projects. Our findings validate the importance of input quality as well as allocation and routing attributes as antecedents of system quality, which, in turn, determines both usefulness and satisfaction with the system. We further demonstrate how service quality and workflow dependency are significant precursors to perceived usefulness. Our results suggest the appropriateness of a multi-dimensional conception of system quality for future research, and provide important design-oriented advice for the design and configuration of BPMSs.
Resumo:
Facial landmarks play an important role in face recognition. They serve different steps of the recognition such as pose estimation, face alignment, and local feature extraction. Recently, cascaded shape regression has been proposed to accurately locate facial landmarks. A large number of weak regressors are cascaded in a sequence to fit face shapes to the correct landmark locations. In this paper, we propose to improve the method by applying gradual training. With this training, the regressors are not directly aimed to the true locations. The sequence instead is divided into successive parts each of which is aimed to intermediate targets between the initial and the true locations. We also investigate the incorporation of pose information in the cascaded model. The aim is to find out whether the model can be directly used to estimate head pose. Experiments on the Annotated Facial Landmarks in the Wild database have shown that the proposed method is able to improve the localization and give accurate estimates of pose.
Resumo:
The increased adoption of business process management approaches, tools and practices, has led organizations to accumulate large collections of business process models. These collections can easily include hundred to thousand models, especially in the context of multinational corporations or as a result of organizational mergers and acquisitions. A concrete problem is thus how to maintain these large repositories in such a way that their complexity does not hamper their practical usefulness as a means to describe and communicate business operations. This paper proposes a technique to automatically infer suitable names for business process models and fragments thereof. This technique is useful for model abstraction scenarios, as for instance when user-specific views of a repository are required, or as part of a refactoring initiative aimed to simplify the repository’s complexity. The technique is grounded in an adaptation of the theory of meaning to the realm of business process models. We implemented the technique in a prototype tool and conducted an extensive evaluation using three process model collections from practice and a case study involving process modelers with different experience.
Resumo:
Process-aware information systems (PAISs) can be configured using a reference process model, which is typically obtained via expert interviews. Over time, however, contextual factors and system requirements may cause the operational process to start deviating from this reference model. While a reference model should ideally be updated to remain aligned with such changes, this is a costly and often neglected activity. We present a new process mining technique that automatically improves the reference model on the basis of the observed behavior as recorded in the event logs of a PAIS. We discuss how to balance the four basic quality dimensions for process mining (fitness, precision, simplicity and generalization) and a new dimension, namely the structural similarity between the reference model and the discovered model. We demonstrate the applicability of this technique using a real-life scenario from a Dutch municipality.